885 research outputs found

    Combining 4D Flow MRI and Complex Networks Theory to Characterize the Hemodynamic Heterogeneity in Dilated and Non-dilated Human Ascending Aortas

    Get PDF
    Motivated by the evidence that the onset and progression of the aneurysm of the ascending aorta (AAo) is intertwined with an adverse hemodynamic environment, the present study characterized in vivo the hemodynamic spatiotemporal complexity and organization in human aortas, with and without dilated AAo, exploring the relations with clinically relevant hemodynamic and geometric parameters. The Complex Networks (CNs) theory was applied for the first time to 4D flow magnetic resonance imaging (MRI) velocity data of ten patients, five of them presenting with AAo dilation. The time-histories along the cardiac cycle of velocity-based quantities were used to build correlation-based CNs. The CNs approach succeeded in capturing large-scale coherent flow features, delimiting flow separation and recirculation regions. CNs metrics highlighted that an increasing AAo dilation (expressed in terms of the ratio between the maximum AAo and aortic root diameter) disrupts the correlation in forward flow reducing the correlation persistence length, while preserving the spatiotemporal homogeneity of secondary flows. The application of CNs to in vivo 4D MRI data holds promise for a mechanistic understanding of the spatiotemporal complexity and organization of aortic flows, opening possibilities for the integration of in vivo quantitative hemodynamic information into risk stratification and classification criteria

    Two-dimensional tunneling in a SQUID

    Full text link
    Traditionally quantum tunneling in a static SQUID is studied on the basis of a classical trajectory in imaginary time under a two-dimensional potential barrier. The trajectory connects a potential well and an outer region crossing their borders in perpendicular directions. In contrast to that main-path mechanism, a wide set of trajectories with components tangent to the border of the well can constitute an alternative mechanism of multi-path tunneling. The phenomenon is essentially non-one-dimensional. Continuously distributed paths under the barrier result in enhancement of tunneling probability. A type of tunneling mechanism (main-path or multi-path) depends on character of a state in the potential well prior to tunneling.Comment: 9 pages, 8 figure

    Dynamic magnetic properties of amorphous Fe80B20 thin films and their relation to interfaces

    Get PDF
    We present a ferromagnetic resonance study of the dynamic properties of a set of amorphous Fe-B films deposited on Corning Glass® and MgO (001) substrates, either with or without capping. We show that the in plane anisotropy of the MgO grown films contains both uniaxial and biaxial components whereas it is just uniaxial for those grown on glass. The angular dependence of the linewidth strongly differs in terms of symmetry and magnitude depending on the substrate and capping. We discuss the role of the interfaces on the magnetization damping and the generation of the anisotropy. We obtained values of the intrinsic damping parameters comparable to the lowest ones reported for amorphous films of similar compositions

    Critical magnetic behavior in [Ag8/Co0.5]x64, [Ag8/Co1]x32 and [Ag16/Co1]x32 epitaxial multilayers

    Get PDF
    We investigate the low temperature magnetic behavior of three epitaxial Co/Ag multilayers, grown onto MgO (001) substrates, with a nominal content per period of either half a monolayer or one monolayer of Co, and either 8 or 16 Ag monolayers. The samples were studied by X-ray reflectivity and diffraction, transmission electron microscopy, magnetometry and ac susceptometry. The results indicated a well defined stacking sequence in the growth direction, the number of periods and of Ag monolayers per period being coincident with the nominal values for each sample. The Co layers were found to be discontinuous and corresponded to a quasi-monodisperse in-plane distribution of Co nanoparticles embedded in a Ag(001) matrix. The zero-field cooled and field cooled temperature variations of the low field magnetization indicated the presence of irreversibilities at temperatures below 20 K. The ac field frequency (f) and temperature (T) dependencies of the real part of the susceptibility (¿') corresponded to a Vogel-Fulcher behavior in the three samples, and indicated a frequency shift parameter (G) of the order of 4 x 10-2. For each sample, the experimental data corresponding to the variations of the imaginary part of the ac susceptibility (¿¿) with f and T were found to collapse into a single curve according to the dynamic scaling law. Taken together, these results allow us to conclude that the three multilayers experience a phase transition of the paramagnetic to superspin glass type, driven by the dipolar interactions between the Co nanoparticles. Regarding the influence of the multilayer features, we found a clear dependence of the order parameter of the transition on the nominal number of Co monolayers per period

    Searching for sterile neutrinos in ice

    Full text link
    Oscillation interpretation of the results from the LSND, MiniBooNE and some other experiments requires existence of sterile neutrino with mass 1\sim 1 eV and mixing with the active neutrinos Uμ02(0.020.04)|U_{\mu 0}|^2 \sim (0.02 - 0.04). It has been realized some time ago that existence of such a neutrino affects significantly the fluxes of atmospheric neutrinos in the TeV range which can be tested by the IceCube Neutrino Observatory. In view of the first IceCube data release we have revisited the oscillations of high energy atmospheric neutrinos in the presence of one sterile neutrino. Properties of the oscillation probabilities are studied in details for various mixing schemes both analytically and numerically. The energy spectra and angular distributions of the νμ\nu_\mu-events have been computed for the simplest νs\nu_s-mass, and νsνμ\nu_s - \nu_\mu mixing schemes and confronted with the IceCube data. An illustrative statistical analysis of the present data shows that in the νs\nu_s-mass mixing case the sterile neutrinos with parameters required by LSND/MiniBooNE can be excluded at about 3σ3\sigma level. The νsνμ\nu_s- \nu_\mu mixing scheme, however, can not be ruled out with currently available IceCube data.Comment: 41 pages, 16 figures. Accepted for publication in JHEP. Minor changes from the previous versio

    The mu - e Conversion in Nuclei, mu --> e gamma, mu --> 3e Decays and TeV Scale See-Saw Scenarios of Neutrino Mass Generation

    Get PDF
    We perform a detailed analysis of lepton flavour violation (LFV) within minimal see-saw type extensions of the Standard Model (SM), which give a viable mechanism of neutrino mass generation and provide new particle content at the electroweak scale. We focus, mainly, on predictions and constraints set on each scenario from mu --> e gamma, mu --> 3e and mu - e conversion in the nuclei. In this class of models, the flavour structure of the Yukawa couplings between the additional scalar and fermion representations and the SM leptons is highly constrained by neutrino oscillation measurements. In particular, we show that in some regions of the parameters space of type I and type II see-saw models, the Dirac and Majorana phases of the neutrino mixing matrix, the ordering and hierarchy of the active neutrino mass spectrum as well as the value of the reactor mixing angle theta_{13} may considerably affect the size of the LFV observables. The interplay of the latter clearly allows to discriminate among the different low energy see-saw possibilities.Comment: Expressions for the factors |C_{me}|^2 and |C_{mu3e}|^2 in the mu-e conversion and mu-->3e decay rates, eqs. (36) and (49), respectively, corrected; results in subsections 2.2 and 2.3 quantitatively changed, qualitatively remain the same; figures 2, 3, 4 and 5 replace

    Indication for the disappearance of reactor electron antineutrinos in the Double Chooz experiment

    Get PDF
    The Double Chooz Experiment presents an indication of reactor electron antineutrino disappearance consistent with neutrino oscillations. A ratio of 0.944 ±\pm 0.016 (stat) ±\pm 0.040 (syst) observed to predicted events was obtained in 101 days of running at the Chooz Nuclear Power Plant in France, with two 4.25 GWth_{th} reactors. The results were obtained from a single 10 m3^3 fiducial volume detector located 1050 m from the two reactor cores. The reactor antineutrino flux prediction used the Bugey4 measurement as an anchor point. The deficit can be interpreted as an indication of a non-zero value of the still unmeasured neutrino mixing parameter \sang. Analyzing both the rate of the prompt positrons and their energy spectrum we find \sang = 0.086 ±\pm 0.041 (stat) ±\pm 0.030 (syst), or, at 90% CL, 0.015 << \sang  <\ < 0.16.Comment: 7 pages, 4 figures, (new version after PRL referee's comments
    corecore