156 research outputs found

    Extended radio emission associated with a breakout eruption from the back side of the Sun

    Get PDF
    Context. Coronal mass ejections (CMEs) on the Sun are the largest explosions in the Solar System that can drive powerful plasma shocks. The eruptions, shocks, and other processes associated to CMEs are efficient particle accelerators and the accelerated electrons in particular can produce radio bursts through the plasma emission mechanism. Aims. Coronal mass ejections and associated radio bursts have been well studied in cases where the CME originates close to the solar limb or within the frontside disc. Here, we study the radio emission associated with a CME eruption on the back side of the Sun on 22 July 2012. Methods. Using radio imaging from the Nancay Radioheliograph, spectroscopic data from the Nancay Decametric Array, and extreme-ultraviolet observations from the Solar Dynamics Observatory and Solar Terrestrial Relations Observatory spacecraft, we determine the nature of the observed radio emission as well as the location and propagation of the CME. Results. We show that the observed low-intensity radio emission corresponds to a type II radio burst or a short-duration type IV radio burst associated with a CME eruption due to breakout reconnection on the back side of the Sun, as suggested by the pre-eruptive magnetic field configuration. The radio emission consists of a large, extended structure, initially located ahead of the CME, that corresponds to various electron acceleration locations. Conclusions. The observations presented here are consistent with the breakout model of CME eruptions. The extended radio emission coincides with the location of the current sheet and quasi-separatrix boundary of the CME flux and the overlying helmet streamer and also with that of a large shock expected to form ahead of the CME in this configuration.Peer reviewe

    Three-dimensional reconstruction of multiple particle acceleration regions during a coronal mass ejection

    Get PDF
    Context. Some of the most prominent sources for particle acceleration in our Solar System are large eruptions of magnetised plasma from the Sun called coronal mass ejections (CMEs). These accelerated particles can generate radio emission through various mechanisms. Aims. CMEs are often accompanied by a variety of solar radio bursts with different shapes and characteristics in dynamic spectra. Radio bursts directly associated with CMEs often show movement in the direction of CME expansion. Here, we aim to determine the emission mechanism of multiple moving radio bursts that accompanied a flare and CME that took place on 14 June 2012. Methods. We used radio imaging from the Nancay Radioheliograph, combined with observations from the Solar Dynamics Observatory and Solar Terrestrial Relations Observatory spacecraft, to analyse these moving radio bursts in order to determine their emission mechanism and three-dimensional (3D) location with respect to the expanding CME. Results. In using a 3D representation of the particle acceleration locations in relation to the overlying coronal magnetic field and the CME propagation, for the first time, we provide evidence that these moving radio bursts originate near the CME flanks and that some are possible signatures of shock-accelerated electrons following the fast CME expansion in the low corona. Conclusions. The moving radio bursts, as well as other stationary bursts observed during the eruption, occur simultaneously with a type IV continuum in dynamic spectra, which is not usually associated with emission at the CME flanks. Our results show that moving radio bursts that could traditionally be classified as moving type IVs can represent shock signatures associated with CME flanks or plasma emission inside the CME behind its flanks, which are closely related to the lateral expansion of the CME in the low corona. In addition, the acceleration of electrons generating this radio emission appears to be favoured at the CME flanks, where the CME encounters coronal streamers and open field regions.Peer reviewe

    Modeling a Coronal Mass Ejection from an Extended Filament Channel. I. Eruption and Early Evolution

    Get PDF
    We present observations and modeling of the magnetic field configuration, morphology, and dynamics of a large-scale, high-latitude filament eruption observed by the Solar Dynamics Observatory. We analyze the 2015 July 9-10 filament eruption and the evolution of the resulting coronal mass ejection (CME) through the solar corona. The slow streamer-blowout CME leaves behind an elongated post-eruption arcade above the extended polarity inversion line that is only poorly visible in extreme ultraviolet (EUV) disk observations and does not resemble a typical bright flare-loop system. Magnetohydrodynamic (MHD) simulation results from our data-inspired modeling of this eruption compare favorably with the EUV and white-light coronagraph observations. We estimate the reconnection flux from the simulation's flare-arcade growth and examine the magnetic-field orientation and evolution of the erupting prominence, highlighting the transition from an erupting sheared-arcade filament channel into a streamer-blowout flux-rope CME. Our results represent the first numerical modeling of a global-scale filament eruption where multiple ambiguous and complex observational signatures in EUV and white light can be fully understood and explained with the MHD simulation. In this context, our findings also suggest that the so-called stealth CME classification, as a driver of unexpected or "problem" geomagnetic storms, belongs more to a continuum of observable/nonobservable signatures than to separate or distinct eruption processes.Peer reviewe

    Modeling a Coronal Mass Ejection from an Extended Filament Channel. II. Interplanetary Propagation to 1 au

    Full text link
    We present observations and modeling results of the propagation and impact at Earth of a high-latitude, extended filament channel eruption that commenced on 2015 July 9. The coronal mass ejection (CME) that resulted from the filament eruption was associated with a moderate disturbance at Earth. This event could be classified as a so-called "problem storm" because it lacked the usual solar signatures that are characteristic of large, energetic, Earth-directed CMEs that often result in significant geoeffective impacts. We use solar observations to constrain the initial parameters and therefore to model the propagation of the 2015 July 9 eruption from the solar corona up to Earth using 3D magnetohydrodynamic heliospheric simulations with three different configurations of the modeled CME. We find the best match between observed and modeled arrival at Earth for the simulation run that features a toroidal flux rope structure of the CME ejecta, but caution that different approaches may be more or less useful depending on the CME-observer geometry when evaluating the space weather impact of eruptions that are extreme in terms of their large size and high degree of asymmetry. We discuss our results in the context of both advancing our understanding of the physics of CME evolution and future improvements to space weather forecasting.Comment: 20 pages, 8 figures, 2 tables, accepted for publication in The Astrophysical Journa

    Eruption and Interplanetary Evolution of a Stealthy Streamer-Blowout CME Observed by PSP at ∼0.5 AU

    Get PDF
    Streamer-blowout coronal mass ejections (SBO-CMEs) are the dominant CME population during solar minimum. Although they are typically slow and lack clear low-coronal signatures, they can cause geomagnetic storms. With the aid of extrapolated coronal fields and remote observations of the off-limb low corona, we study the initiation of an SBO-CME preceded by consecutive CME eruptions consistent with a multi-stage sympathetic breakout scenario. From inner-heliospheric Parker Solar Probe (PSP) observations, it is evident that the SBO-CME is interacting with the heliospheric magnetic field and plasma sheet structures draped about the CME flux rope. We estimate that 18 +/- 11% of the CME's azimuthal magnetic flux has been eroded through magnetic reconnection and that this erosion began after a heliospheric distance of similar to 0.35 AU from the Sun was reached. This observational study has important implications for understanding the initiation of SBO-CMEs and their interaction with the heliospheric surroundings.Peer reviewe

    Planar magnetic structures in coronal mass ejection-driven sheath regions

    Get PDF
    Planar magnetic structures (PMSs) are periods in the solar wind during which interplanetary magnetic field vectors are nearly parallel to a single plane. One of the specific regions where PMSs have been reported are coronal mass ejection (CME)-driven sheaths. We use here an automated method to identify PMSs in 95 CME sheath regions observed in situ by the Wind and ACE spacecraft between 1997 and 2015. The occurrence and location of the PMSs are related to various shock, sheath, and CME properties. We find that PMSs are ubiquitous in CME sheaths; 85% of the studied sheath regions had PMSs with the mean duration of 6 h. In about one-third of the cases the magnetic field vectors followed a single PMS plane that covered a significant part (at least 67%) of the sheath region. Our analysis gives strong support for two suggested PMS formation mechanisms: the amplification and alignment of solar wind discontinuities near the CME-driven shock and the draping of the magnetic field lines around the CME ejecta. For example, we found that the shock and PMS plane normals generally coincided for the events where the PMSs occurred near the shock (68% of the PMS plane normals near the shock were separated by less than 20 degrees from the shock normal), while deviations were clearly larger when PMSs occurred close to the ejecta leading edge. In addition, PMSs near the shock were generally associated with lower upstream plasma beta than the cases where PMSs occurred near the leading edge of the CME. We also demonstrate that the planar parts of the sheath contain a higher amount of strong southward magnetic field than the non-planar parts, suggesting that planar sheaths are more likely to drive magnetospheric activity.Peer reviewe

    Procesamiento paralelo en MatLab : Su aplicación a modelos teóricos

    Get PDF
    El presente trabajo se inscribe como una línea nueva de investigación dentro del procesamiento de imágenes y señales. Trata sobre el uso del procesamiento paralelo en el ámbito de los modelos. El mismo se considera el paso previo a su posterior aplicación al procesamiento de imágenes y señales. Esta comunicación muestra la introducción de procesamiento paralelo dentro del software de aplicación. Se han utilizado las librerías de MatLab (denominadas toolbox) como software de aplicación, además se agrego un toolbox de acceso gratuito. En el presente informe se ha incluido los avances a través de un conjunto de ejemplos que han servido como primera aproximación al rendimiento probable de su uso dentro del proyecto general.Eje: Procesamiento distribuido y paraleloRed de Universidades con Carreras en Informática (RedUNCI

    Coronal Magnetic Structure of Earthbound CMEs and In Situ Comparison

    Get PDF
    Predicting the magnetic field within an Earth-directed coronal mass ejection (CME) well before its arrival at Earth is one of the most important issues in space weather research. In this article, we compare the intrinsic flux rope type, that is, the CME orientation and handedness during eruption, with the in situ flux rope type for 20 CME events that have been uniquely linked from Sun to Earth through heliospheric imaging. Our study shows that the intrinsic flux rope type can be estimated for CMEs originating from different source regions using a combination of indirect proxies. We find that only 20% of the events studied match strictly between the intrinsic and in situ flux rope types. The percentage rises to 55% when intermediate cases (where the orientation at the Sun and/or in situ is close to 45 degrees) are considered as a match. We also determine the change in the flux rope tilt angle between the Sun and Earth. For the majority of the cases, the rotation is several tens of degrees, while 35% of the events change by more than 90 degrees. While occasionally the intrinsic flux rope type is a good proxy for the magnetic structure impacting Earth, our study highlights the importance of capturing the CME evolution for space weather forecasting purposes. Moreover, we emphasize that determination of the intrinsic flux rope type is a crucial input for CME forecasting models. Plain Language Summary Coronal mass ejections (CMEs) are huge eruptions from the Sun that can cause myriad of space weather effects at Earth. The ability of a CME to drive a geomagnetic storm is given largely by how its magnetic field is configured. Predicting the magnetic structure well before CME arrival at Earth is one of the major goals in space weather forecasting. Palmerio et al. (2018) study 20 CMEs observed both at the Sun and at Earth. They use observations of the solar disc to determine the magnetic structure at the Sun and then compare it with the magnetic structure estimated via magnetic field measurements near Earth. They report that the magnetic structures match closely only in 20% of the events studied. They also estimate the orientations of the CME axes at the Sun and at Earth. They find that 65% of the events change their orientations by less than 90 degrees. They conclude that knowledge of the CME magnetic structure at the Sun is an important factor in space weather forecasting, but the CME evolution after eruption has to be taken into account in order to improve current predictions.Peer reviewe

    Magnetic field fluctuation properties of coronal mass ejection-driven sheath regions in the near-Earth solar wind

    Get PDF
    In this work, we investigate magnetic field fluctuations in three coronal mass ejection (CME)-driven sheath regions at 1 AU, with their speeds ranging from slow to fast. The data set we use consists primarily of high-resolution (0.092 s) magnetic field measurements from the Wind spacecraft. We analyse magnetic field fluctuation amplitudes, compressibility, and spectral properties of fluctuations. We also analyse intermittency using various approaches; we apply the partial variance of increments (PVIs) method, investigate probability distribution functions of fluctuations, including their skewness and kurtosis, and perform a structure function analysis. Our analysis is conducted separately for three different subregions within the sheath and one in the solar wind ahead of it, each 1 h in duration. We find that, for all cases, the transition from the solar wind ahead to the sheath generates new fluctuations, and the intermittency and compressibility increase, while the region closest to the ejecta leading edge resembled the solar wind ahead. The spectral indices exhibit large variability in different parts of the sheath but are typically steeper than Kolmogorov's in the inertial range. The structure function analysis produced generally the best fit with the extended p model, suggesting that turbulence is not fully developed in CME sheaths near Earth's orbit. Both Kraichnan-Iroshinikov and Kolmogorov's forms yielded high intermittency but different spectral slopes, thus questioning how well these models can describe turbulence in sheaths. At the smallest timescales investigated, the spectral indices indicate shallower than expected slopes in the dissipation range (between 2 and 2 :5), suggesting that, in CME-driven sheaths at 1 AU, the energy cascade from larger to smaller scales could still be ongoing through the ion scale. Many turbulent properties of sheaths (e.g. spectral indices and compressibility) resemble those of the slow wind rather than the fast. They are also partly similar to properties reported in the terrestrial magnetosheath, in particular regarding their intermittency, compressibility, and absence of Kolmogorov's type turbulence. Our study also reveals that turbulent properties can vary considerably within the sheath. This was particularly the case for the fast sheath behind the strong and quasi-parallel shock, including a small, coherent structure embedded close to its midpoint. Our results support the view of the complex formation of the sheath and different physical mechanisms playing a role in generating fluctuations in them.Peer reviewe

    Three-dimensional reconstruction of multiple particle acceleration regions during a coronal mass ejection

    Get PDF
    Context. Some of the most prominent sources for particle acceleration in our Solar System are large eruptions of magnetised plasma from the Sun called coronal mass ejections (CMEs). These accelerated particles can generate radio emission through various mechanisms.Aims. CMEs are often accompanied by a variety of solar radio bursts with different shapes and characteristics in dynamic spectra. Radio bursts directly associated with CMEs often show movement in the direction of CME expansion. Here, we aim to determine the emission mechanism of multiple moving radio bursts that accompanied a flare and CME that took place on 14 June 2012.Methods. We used radio imaging from the Nancay Radioheliograph, combined with observations from the Solar Dynamics Observatory and Solar Terrestrial Relations Observatory spacecraft, to analyse these moving radio bursts in order to determine their emission mechanism and three-dimensional (3D) location with respect to the expanding CME.Results. In using a 3D representation of the particle acceleration locations in relation to the overlying coronal magnetic field and the CME propagation, for the first time, we provide evidence that these moving radio bursts originate near the CME flanks and that some are possible signatures of shock-accelerated electrons following the fast CME expansion in the low corona.Conclusions. The moving radio bursts, as well as other stationary bursts observed during the eruption, occur simultaneously with a type IV continuum in dynamic spectra, which is not usually associated with emission at the CME flanks. Our results show that moving radio bursts that could traditionally be classified as moving type IVs can represent shock signatures associated with CME flanks or plasma emission inside the CME behind its flanks, which are closely related to the lateral expansion of the CME in the low corona. In addition, the acceleration of electrons generating this radio emission appears to be favoured at the CME flanks, where the CME encounters coronal streamers and open field regions
    • …
    corecore