32,995 research outputs found
Effect of field of view and monocular viewing on angular size judgements in an outdoor scene
Observers typically overestimate the angular size of distant objects. Significantly, overestimations are greater in outdoor settings than in aircraft visual-scene simulators. The effect of field of view and monocular and binocular viewing conditions on angular size estimation in an outdoor field was examined. Subjects adjusted the size of a variable triangle to match the angular size of a standard triangle set at three greater distances. Goggles were used to vary the field of view from 11.5 deg to 90 deg for both monocular and binocular viewing. In addition, an unrestricted monocular and binocular viewing condition was used. It is concluded that neither restricted fields of view similar to those present in visual simulators nor the restriction of monocular viewing causes a significant loss in depth perception in outdoor settings. Thus, neither factor should significantly affect the depth realism of visual simulators
Comparison of two head-up displays in simulated standard and noise abatement night visual approaches
Situation and command head-up displays were evaluated for both standard and two segment noise abatement night visual approaches in a fixed base simulation of a DC-8 transport aircraft. The situation display provided glide slope and pitch attitude information. The command display provided glide slope information and flight path commands to capture a 3 deg glide slope. Landing approaches were flown in both zero wind and wind shear conditions. For both standard and noise abatement approaches, the situation display provided greater glidepath accuracy in the initial phase of the landing approaches, whereas the command display was more effective in the final approach phase. Glidepath accuracy was greater for the standard approaches than for the noise abatement approaches in all phases of the landing approach. Most of the pilots preferred the command display and the standard approach. Substantial agreement was found between each pilot's judgment of his performance and his actual performance
A General Expression for Symmetry Factors of Feynman Diagrams
The calculation of the symmetry factor corresponding to a given Feynman
diagram is well known to be a tedious problem. We have derived a simple formula
for these symmetry factors. Our formula works for any diagram in scalar theory
( and interactions), spinor QED, scalar QED, or QCD.Comment: RevTex 11 pages with 10 figure
Three methods of presenting flight vector information in a head-up display during simulated STOL approaches
A simulator study was conducted to determine the usefulness of adding flight path vector symbology to a head-up display designed to improve glide-slope tracking performance during steep 7.5 deg visual approaches in STOL aircraft. All displays included a fixed attitude symbol, a pitch- and roll-stabilized horizon bar, and a glide-slope reference bar parallel to and 7.5 deg below the horizon bar. The displays differed with respect to the flight-path marker (FPM) symbol: display 1 had no FPM symbol; display 2 had an air-referenced FPM, and display 3 had a ground-referenced FPM. No differences between displays 1 and 2 were found on any of the performance measures. Display 3 was found to decrease height error in the early part of the approach and to reduce descent rate variation over the entire approach. Two measures of workload did not indicate any differences between the displays
Some implications of sampling choices on comparisons between satellite and model aerosol optical depth fields
The comparison of satellite and model aerosol optical depth (AOD) fields provides useful information on the strengths and weaknesses of both. However, the sampling of satellite and models is very different and some subjective decisions about data selection and aggregation must be made in order to perform such comparisons. This work examines some implications of these decisions, using GlobAerosol AOD retrievals at 550 nm from Advanced Along-Track Scanning Radiometer (AATSR) measurements, and aerosol fields from the GEOS-Chem chemistry transport model. It is recommended to sample the model only where the satellite flies over on a particular day; neglecting this can cause regional differences in model AOD of up to 0.1 on monthly and annual timescales. The comparison is observed to depend strongly upon thresholds for sparsity of satellite retrievals in the model grid cells. Requiring at least 25% coverage of the model grid cell by satellite data decreases the observed difference between the two by approximately half over land. The impact over ocean is smaller. In both model and satellite datasets, there is an anticorrelation between the proportion <i>p</i> of a model grid cell covered by satellite retrievals and the AOD. This is attributed to small <i>p</i> typically occuring due to high cloud cover and lower AODs being found in large clear-sky regions. Daily median AATSR AODs were found to be closer to GEOS-Chem AODs than daily means (with the root mean squared difference being approximately 0.05 smaller). This is due to the decreased sensitivity of medians to outliers such as cloud-contaminated retrievals, or aerosol point sources not included in the model
Determination of the radionuclide content of feces and urine from astronauts engaged in space flight
Measurement of radiation exposure of Apollo 7, 8, 9, and 10 astronauts by determination of radionuclide content of feces and urin
The effect of viewing time, time to encounter, and practice on perception of aircraft separation on a cockpit display of traffic information
The concept of a cockpit display of traffic information (CDTI) includes the integration of air traffic, navigation, and other pertinent information in a single electronic display in the cockpit. Two studies were conducted to develop a clear and concise display format for use in later full-mission simulator evaluations of the CDTI concept. Subjects were required to monitor a CDTI for specified periods of time and to make perceptual judgments concerning the future position of a single intruder aircraft in relationship to their own aircraft. Experimental variables included: type of predictor information displayed on the two aircraft symbols; time to encounter point; length of time subjects viewed the display; amount of practice; and type of encounter (straight or turning). Results show that length of viewing time had little or no effect on performance; time to encounter influenced performance with the straight predictor but did not with the curved predictor; and that learning occurred under all conditions
Recommended from our members
The narrative coherence of witness transcripts in children on the autism spectrum
Background and Aims. Autistic children often recall fewer details about witnessed events than typically developing children (of comparable age and ability), although the information they recall is generally no less accurate. Previous research has not examined the narrative coherence of such accounts, despite higher quality narratives potentially being perceived more favourably by criminal justice professionals and juries. This study compared the narrative coherence of witness transcripts produced by autistic and typically developing (TD) children (ages 6-11 years, IQs 70+).
Methods and Procedures. Secondary analysis was carried out on interview transcripts from a subset of 104 participants (autism=52, TD=52) who had taken part in a larger study of eyewitness skills in autistic and TD children. Groups were matched on chronological age, IQ and receptive language ability. Coding frameworks were adopted from existing narrative research, featuring elements of ‘story grammar’.
Outcomes and Results. Whilst fewer event details were reported by autistic children, there were no group differences in narrative coherence (number and diversity of ‘story grammar’ elements used), narrative length or semantic diversity.
Conclusions and Implications. These findings suggest that the narrative coherence of autistic children’s witness accounts is equivalent to TD peers of comparable age and ability
State Dependence of Stimulus-Induced Variability Tuning in Macaque MT
Behavioral states marked by varying levels of arousal and attention modulate
some properties of cortical responses (e.g. average firing rates or pairwise
correlations), yet it is not fully understood what drives these response
changes and how they might affect downstream stimulus decoding. Here we show
that changes in state modulate the tuning of response variance-to-mean ratios
(Fano factors) in a fashion that is neither predicted by a Poisson spiking
model nor changes in the mean firing rate, with a substantial effect on
stimulus discriminability. We recorded motion-sensitive neurons in middle
temporal cortex (MT) in two states: alert fixation and light, opioid
anesthesia. Anesthesia tended to lower average spike counts, without decreasing
trial-to-trial variability compared to the alert state. Under anesthesia,
within-trial fluctuations in excitability were correlated over longer time
scales compared to the alert state, creating supra-Poisson Fano factors. In
contrast, alert-state MT neurons have higher mean firing rates and largely
sub-Poisson variability that is stimulus-dependent and cannot be explained by
firing rate differences alone. The absence of such stimulus-induced variability
tuning in the anesthetized state suggests different sources of variability
between states. A simple model explains state-dependent shifts in the
distribution of observed Fano factors via a suppression in the variance of gain
fluctuations in the alert state. A population model with stimulus-induced
variability tuning and behaviorally constrained information-limiting
correlations explores the potential enhancement in stimulus discriminability by
the cortical population in the alert state.Comment: 36 pages, 18 figure
- …