1,553 research outputs found

    What are the shapes of response time distributions in visual search?

    Get PDF
    Many visual search experiments measure response time (RT) as their primary dependent variable. Analyses typically focus on mean (or median) RT. However, given enough data, the RT distribution can be a rich source of information. For this paper, we collected about 500 trials per cell per observer for both target-present and target-absent displays in each of three classic search tasks: feature search, with the target defined by color; conjunction search, with the target defined by both color and orientation; and spatial configuration search for a 2 among distractor 5s. This large data set allows us to characterize the RT distributions in detail. We present the raw RT distributions and fit several psychologically motivated functions (ex-Gaussian, ex-Wald, Gamma, and Weibull) to the data. We analyze and interpret parameter trends from these four functions within the context of theories of visual search

    Exploring One-Cell Inversion Method for Transient Transport on GPU

    Full text link
    To find deterministic solutions to the transient SNS_N neutron transport equation, iterative schemes are typically used to treat the scattering (and fission) source terms. We explore the one-cell inversion iteration scheme to do this on the GPU and make comparisons to a source iteration scheme. We examine convergence behavior, through the analysis of spectral radii, of both one-cell inversion and source iterations. To further boost the GPU parallel efficiency, we derive a higher-order discretization method, simple corner balance (in space) and multiple balance (in time), to add more work to the threads and gain accuracy. Fourier analysis on this higher-order numerical method shows that it is unconditionally stable, but it can produce negative flux alterations that are critically damped through time. We explore a whole-problem (in all angle and all cell) sparse linear algebra framework, for both iterative schemes, to quickly produce performant code for GPUs. Despite one-cell inversion requiring additional iterations to convergence, those iterations can be done faster to provide a significant speedup over source iteration in quadrature sets at or below S128S_{128}. Going forward we will produce a two-dimensional implementation of this code to experiment with memory and performance impacts of a whole-problem framework including methods of synthetic acceleration and pre-conditioners for this scheme, then we will begin making direct comparisons to traditionally implemented source iteration in production code.Comment: 11 pages, 4 figures, M\&C 2023 ANS conferenc

    Validation of time-dependent shift using the pulsed sphere benchmarks

    Get PDF
    The detailed behavior of neutrons in a rapidly changing time-dependent physical system is a challenging computational physics problem, particularly when using Monte Carlo methods on heterogeneous high-performance computing architectures. A small number of algorithms and code implementations have been shown to be performant for time-independent (fixed source and k-eigenvalue) Monte Carlo, and there are existing simulation tools that successfully solve the time-dependent Monte Carlo problem on smaller computing platforms. To bridge this gap, a time-dependent version of ORNL’s Shift code has been recently developed. Shift’s history-based algorithm on CPUs, and its event-based algorithm on GPUs, have both been observed to scale well to very large numbers of processors, which motivated the extension of this code to solve time-dependent problems. The validation of this new capability requires a comparison with time-dependent neutron experiments. Lawrence Livermore National Laboratory’s (LLNL) pulsed sphere benchmark experiments were simulated in Shift to validate both the time-independent as well as new time-dependent features recently incorporated into Shift. A suite of pulsed-sphere models was simulated using Shift and compared to the available experimental data and simulations with MCNP. Overall results indicate that Shift accurately simulates the pulsed sphere benchmarks, and that the new time-dependent modifications of Shift are working as intended. Validated exascale neutron transport codes are essential for a wide variety of future multiphysics applications

    Microtiming patterns and interactions with musical properties in Samba music

    Get PDF
    In this study, we focus on the interaction between microtiming patterns and several musical properties: intensity, meter and spectral characteristics. The data-set of 106 musical audio excerpts is processed by means of an auditory model and then divided into several spectral regions and metric levels. The resulting segments are described in terms of their musical properties, over which patterns of peak positions and their intensities are sought. A clustering algorithm is used to systematize the process of pattern detection. The results confirm previously reported anticipations of the third and fourth semiquavers in a beat. We also argue that these patterns of microtiming deviations interact with different profiles of intensities that change according to the metrical structure and spectral characteristics. In particular, we suggest two new findings: (i) a small delay of microtiming positions at the lower end of the spectrum on the first semiquaver of each beat and (ii) systematic forms of accelerando and ritardando at a microtiming level covering two-beat and four-beat phrases. The results demonstrate the importance of multidimensional interactions with timing aspects of music. However, more research is needed in order to find proper representations for rhythm and microtiming aspects in such contexts

    Degradation of communal rangelands in South Africa: towards an improved understanding to inform policy

    Get PDF
    In South Africa, the relative extent of range degradation under freehold compared to communal tenure has been strongly debated. We present a perspective on the processes that drive rangeland degradation on land under communal tenure. Our findings are based on literature as well as extensive field work on both old communal lands and ‘released’ areas, where freehold farms have been transferred to communal ownership. We discuss the patterns of degradation that have accompanied communal stewardship and make recommendations on the direction policy should follow to prevent further degradation and mediate rehabilitation of existing degraded land.Keywords: communal rangelands, land degradation, rehabilitation, social systemsAfrican Journal of Range & Forage Science 2013, 30(1&2): 57–6
    • …
    corecore