659 research outputs found

    Southern California margin benthic foraminiferal assemblages record recent centennial-scale changes in oxygen minimum zone

    Get PDF
    Microfossil assemblages provide valuable records to investigate variability in continental margin biogeochemical cycles, including dynamics of the oxygen minimum zone (OMZ). Analyses of modern assemblages across environmental gradients are necessary to understand relationships between assemblage characteristics and environmental factors. Five cores were analyzed from the San Diego margin (32∘42′00′′ N, 117∘30′00′′ W; 300–1175 m water depth) for core top benthic foraminiferal assemblages to understand relationships between community assemblages and spatial hydrographic gradients as well as for down-core benthic foraminiferal assemblages to identify changes in the OMZ through time. Comparisons of benthic foraminiferal assemblages from two size fractions (63–150 and \u3e150 µm) exhibit similar trends across the spatial and environmental gradient or in some cases exhibit more pronounced spatial trends in the \u3e150 µm fraction. A range of species diversity exists within the modern OMZ (1.910–2.586 H, Shannon index), suggesting that diversity is not driven by oxygenation alone. We identify two hypoxic-associated species (B. spissa and U. peregrina), one oxic-associated species (G. subglobosa) and one OMZ edge-associated species (B. argentea). Down-core analysis of indicator species reveals variability in the upper margin of the OMZ (528 m water depth) while the core of the OMZ (800 m) and below the OMZ (1175 m) remained stable in the last 1.5 kyr. We document expansion of the upper margin of the OMZ beginning 400 BP on the San Diego margin that is synchronous with other regional records of oxygenation

    Global Responses of Resistant and Susceptible Sorghum (\u3ci\u3eSorghum bicolor\u3c/i\u3e) to Sugarcane Aphid (\u3ci\u3eMelanaphis sacchari\u3c/i\u3e)

    Get PDF
    The sugarcane aphid (Melanaphis sacchari) has emerged as a significant pest for sorghum. The use of sugarcane aphid-resistant sorghum germplasm with integrated pest management strategies appears to be an excellent solution to this problem. In this study, a resistant line (RTx2783) and a susceptible line (A/BCK60) were used to characterize the differences in plant responses to the sugarcane aphid through a series of experiments, which examined global sorghum gene expression, aphid feeding behavior and inheritance of aphid resistance. The global transcriptomic responses to sugarcane aphids in resistant and susceptible plants were identified using RNA-seq and compared to the expression profiles of uninfested plants at 5, 10, and 15 days post-infestation. The expression of genes from several functional categories were altered in aphid-infested susceptible plants, which included genes related to cell wall modification, photosynthesis and phytohormone biosynthesis. In the resistant line, only 31 genes were differentially expressed in the infested plants relative to uninfested plants over the same timecourse. However, network analysis of these transcriptomes identified a co-expression module where the expression of multiple sugar and starch associated genes were repressed in infested resistant plants at 5 and 10 days. Several nucleotide-binding-site, leucine-rich repeat (NBS-LRR) and disease resistance genes similar to aphid resistance genes identified in other plants are identified in the current study which may be involved in sugarcane aphid resistance. The electrical penetration graph (EPG) results indicated that sugarcane aphid spent approximately twice as long in non-probing phase, and approximately a quarter of time in phloem ingestion phase on the resistant and F1 plants compared to susceptible plant. Additionally, network analysis identified a phloem protein 2 gene expressed in both susceptible and resistant plants early (day 5) of infestation, which may contribute to defense against aphid feeding within sieve elements. The resistant line RTx2783 displayed both antixenosis and antibiosis modes of resistance based on EPG and choice bioassays between susceptible, resistant and F1 plants. Aphid resistance from RTx2783 segregated as a single dominant locus in the F2 generation, which will enable breeders to rapidly develop sugarcane aphid-resistant hybrids using RTx2783 as the male parent

    Global Responses of Resistant and Susceptible Sorghum (Sorghum bicolor) to Sugarcane Aphid (Melanaphis sacchari)

    Get PDF
    The sugarcane aphid (Melanaphis sacchari) has emerged as a significant pest for sorghum. The use of sugarcane aphid-resistant sorghum germplasm with integrated pest management strategies appears to be an excellent solution to this problem. In this study, a resistant line (RTx2783) and a susceptible line (A/BCK60) were used to characterize the differences in plant responses to the sugarcane aphid through a series of experiments, which examined global sorghum gene expression, aphid feeding behavior and inheritance of aphid resistance. The global transcriptomic responses to sugarcane aphids in resistant and susceptible plants were identified using RNA-seq and compared to the expression profiles of uninfested plants at 5, 10, and 15 days post-infestation. The expression of genes from several functional categories were altered in aphid-infested susceptible plants, which included genes related to cell wall modification, photosynthesis and phytohormone biosynthesis. In the resistant line, only 31 genes were differentially expressed in the infested plants relative to uninfested plants over the same timecourse. However, network analysis of these transcriptomes identified a co-expression module where the expression of multiple sugar and starch associated genes were repressed in infested resistant plants at 5 and 10 days. Several nucleotide-binding-site, leucine-rich repeat (NBS-LRR) and disease resistance genes similar to aphid resistance genes identified in other plants are identified in the current study which may be involved in sugarcane aphid resistance. The electrical penetration graph (EPG) results indicated that sugarcane aphid spent approximately twice as long in non-probing phase, and approximately a quarter of time in phloem ingestion phase on the resistant and F1 plants compared to susceptible plant. Additionally, network analysis identified a phloem protein 2 gene expressed in both susceptible and resistant plants early (day 5) of infestation, which may contribute to defense against aphid feeding within sieve elements. The resistant line RTx2783 displayed both antixenosis and antibiosis modes of resistance based on EPG and choice bioassays between susceptible, resistant and F1 plants. Aphid resistance from RTx2783 segregated as a single dominant locus in the F2 generation, which will enable breeders to rapidly develop sugarcane aphid-resistant hybrids using RTx2783 as the male parent

    Extensive Morphological Variability in Asexually Produced Planktic Foraminifera

    Get PDF
    Marine protists are integral to the structure and function of pelagic ecosystems and marine carbon cycling, with rhizarian biomass alone accounting for more than half of all mesozooplankton in the oligotrophic oceans. Yet, understanding how their environment shapes diversity within species and across taxa is limited by a paucity of observations of heritability and life history. Here, we present observations of asexual reproduction, morphologic plasticity, and ontogeny in the planktic foraminifer in laboratory culture. Our results demonstrate that planktic foraminifera reproduce both sexually and asexually and demonstrate extensive phenotypic plasticity in response to nonheritable factors. These two processes fundamentally explain the rapid spatial and temporal response of even imperceptibly low populations of planktic foraminifera to optimal conditions and the diversity and ubiquity of these species across the range of environmental conditions that occur in the ocean

    Cerebral Aβ<sub>40</sub> and systemic hypertension

    Get PDF
    Mid-life hypertension and cerebral hypoperfusion may be preclinical abnormalities in people who later develop Alzheimer’s disease. Although accumulation of amyloid-beta (Aβ) is characteristic of Alzheimer’s disease and is associated with upregulation of the vasoconstrictor peptide endothelin-1 within the brain, it is unclear how this affects systemic arterial pressure. We have investigated whether infusion of Aβ40 into ventricular cerebrospinal fluid modulates blood pressure in the Dahl salt-sensitive rat. The Dahl salt-sensitive rat develops hypertension if given a high-salt diet. Intracerebroventricular infusion of Aβ induced a progressive rise in blood pressure in rats with pre-existing hypertension produced by a high-salt diet ( p &lt; 0.0001), but no change in blood pressure in normotensive rats. The elevation in arterial pressure in high-salt rats was associated with an increase in low frequency spectral density in systolic blood pressure, suggesting autonomic imbalance, and reduced cardiac baroreflex gain. Our results demonstrate the potential for intracerebral Aβ to exacerbate hypertension, through modulation of autonomic activity. Present findings raise the possibility that mid-life hypertension in people who subsequently develop Alzheimer’s disease may in some cases be a physiological response to reduced cerebral perfusion complicating the accumulation of Aβ within the brain. </jats:p

    Application of pharmacogenomics and bioinformatics to exemplify the utility of human <i>ex vivo</i> organoculture models in the field of precision medicine

    Get PDF
    Here we describe a collaboration between industry, the National Health Service (NHS) and academia that sought to demonstrate how early understanding of both pharmacology and genomics can improve strategies for the development of precision medicines. Diseased tissue ethically acquired from patients suffering from chronic obstructive pulmonary disease (COPD), was used to investigate inter-patient variability in drug efficacy using ex vivo organocultures of fresh lung tissue as the test system. The reduction in inflammatory cytokines in the presence of various test drugs was used as the measure of drug efficacy and the individual patient responses were then matched against genotype and microRNA profiles in an attempt to identify unique predictors of drug responsiveness. Our findings suggest that genetic variation in CYP2E1 and SMAD3 genes may partly explain the observed variation in drug response

    Applying and refining DNA analysis to determine the identity of plant material extracted from the digestive tracts of katydids

    Get PDF
    Background Feeding habits are central to animal ecology, but it is often difficult to characterize the diet of organisms that are arboreal, nocturnal, rare, or highly mobile. Genetic analysis of gut contents is a promising approach for expanding our understanding of animal feeding habits. Here, we adapt a laboratory protocol for extracting and sequencing plant material from gut contents and apply it to Neotropical forest katydids (Orthoptera: Tettigoniidae) on Barro Colorado Island (BCI) in Panama. Methods Our approach uses three chloroplast primer sets that were previously developed to identify vegetation on BCI. We describe the utility and success rate of each primer set. We then test whether there is a significant difference in the amplification and sequencing success of gut contents based on the size or sex of the katydid, the time of day that it was caught, and the color of the extracted gut contents. Results We find that there is a significant difference in sequencing success as a function of gut color. When extracts were yellow, green, or colorless the likelihood of successfully amplifying DNA ranged from ~30–60%. When gut extracts were red, orange, or brown, amplification success was exceptionally low (0–8%). Amplification success was also higher for smaller katydids and tended to be more successful in katydids that were captured earlier in the night. Strength of the amplified product was indicative of the likelihood of sequencing success, with strong bands having a high likelihood of success. By anticipating which samples are most likely to succeed, we provide information useful for estimating the number of katydids that need to be collected and minimizing the costs of purifying, amplifying, and sequencing samples that are unlikely to succeed. This approach makes it possible to understand the herbivory patterns of these trophically important katydids and can be applied more broadly to understand the diet of other tropical herbivores

    Student engagement with feedback and attainment: the role of academic self-efficacy

    Get PDF
    Academic self-efficacy, the belief that one can achieve desired academic goals plays an important role in learning. This study aimed to determine the extent to which academic self-efficacy mediates relationships between students’ perceptions of feedback and their academic attainment. An opportunity sample of 232 students (123 female) in their first year of higher education reported their academic self-efficacy and evaluated their assessment experience, including the perceived quantity and quality of feedback and the extent to which this feedback elicited an active response. Positive associations were observed between academic attainment and students’ confidence that they could achieve their desired grades and adopt appropriate study behaviours. A negative association was identified between attainment and confidence to talk about their studies. Attainment was not related to the perceived quantity or quality of feedback, but did bear a significant association with the reported use to which feedback was put. Positive associations were generally identified between academic self-efficacy and perceptions of feedback. Path models revealed that inter-relationships were best represented by a model wherein academic self-efficacy mediated links between students’ perceptions of feedback and academic attainment. The findings highlight the need to incorporate characteristics of the individual into an understanding of student engagement with feedback
    • …
    corecore