3,237 research outputs found

    Phase resolved PLIF and chemiluminescence for measuring combustion dynamics

    Get PDF
    Transient behavior of combustion systems has long been a subject of both fundamental and practical concerns. Extreme cases of very rapid changes include the ignition of reacting mixtures and detonation. At the other extreme is a wide range of quasi-steady changes of behavior, for example adjustments of the operating point of a combustion chamber. Between the limiting cases of 'infinitely fast' and 'infinitesimally slow' lie important fundamental problems of time-dependent behavior and a wide array of practical applications. Among the latter are combustion instabilities and their active control, a primary motivation for the work reported in this paper. Owing to the complicated chemistry, chemical kinetics and flow dynamics of actual combustion systems, numerical simulations of their behavior remains in a relatively primitive state. Even as that situation continually improves, it is an essential part of the field that methods of measuring true dynamical behavior be developed to provide results having both fine spatial resolution and accuracy in time. This paper is a progress report of recent research carried out in the Jet Propulsion Center of the California Institute of Technology

    The Fermi surface of CeCoIn5: dHvA

    Full text link
    Measurements of the de Haas - van Alphen effect in the normal state of the heavy Fermion superconductor CeCoIn5 have been carried out using a torque cantilever at temperatures ranging from 20 to 500 mK and in fields up to 18 tesla. Angular dependent measurements of the extremal Fermi surface areas reveal a more extreme two dimensional sheet than is found in either CeRhIn5 or CeIrIn5. The effective masses of the measured frequencies range from 9 to 20 m*/m0.Comment: 4 pages, 2 figures, submitted to PRB Rapid

    Lake Itasca State Park Myxomycetes: An Annotated Checklist

    Get PDF
    A lack of published information regarding Minnesota Myxomycetes prompted attempts to document species from Lake Itasca State Park in Clearwater county, in the northwest part of the state. Seventy-five species are herein recorded from 341 collections made during the years 1959, 1971,and 1975-78

    Leaching losses from Kenyan maize cropland receiving different rates of nitrogen fertilizer

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nutrient Cycling in Agroecosystems 108 (2017): 195–209, doi:10.1007/s10705-017-9852-z.Meeting food security requirements in sub-Saharan Africa (SSA) will require increasing fertilizer use to improve crop yields, however excess fertilization can cause environmental and public health problems in surface and groundwater. Determining the threshold of reasonable fertilizer application in SSA requires an understanding of flow dynamics and nutrient transport in under-studied, tropical soils experiencing seasonal rainfall. We estimated leaching flux in Yala, Kenya on a maize field that received from 0 to 200 kg ha−1 of nitrogen (N) fertilizer. Soil pore water concentration measurements during two growing seasons were coupled with results from a numerical fluid flow model to calculate the daily flux of nitrate-nitrogen (NO3−-N). Modeled NO3−-N losses to below 200 cm for 1 year ranged from 40 kg N ha−1 year−1 in the 75 kg N ha−1 year−1 treatment to 81 kg N ha−1 year−1 in the 200 kg N ha−1 treatment. The highest soil pore water NO3−-N concentrations and NO3−-N leaching fluxes occurred on the highest N application plots, however there was a poor correlation between N application rate and NO3−-N leaching for the remaining N application rates. The drought in the second study year resulted in higher pore water NO3−-N concentrations, while NO3−-N leaching was disproportionately smaller than the decrease in precipitation. The lack of a strong correlation between NO3−-N leaching and N application rate, and a large decrease in flux between 120 and 200 cm suggest processes that influence NO3−-N retention in soils below 200 cm will ultimately control NO3−-N leaching at the watershed scale.Earth Institute, Columbia University; National Science Foundation IIA-0968211; Bill and Melinda Gates Foundatio

    Pine wilt disease

    Get PDF
    "The pine wilt disease is caused by a microscopic nematode, Bursaphelenchus xylophilus, sometimes known as the pinewood nematode. It is transmitted in Missouri by a long-horned beetle vector, Monochamus carolinensis. It is isolated and identified as a serious disease problem in the State Extension Diagnostic Laboratory in the Plant Pathology Department of the University of Missouri in 1979."--First page.Einar W. Palm and Victor L. Dropkin (Professor Emeritus, Department of Plant Pathology), Marc Linit (Department of Entomology), Carol Trokey (School of Forestry, Fisheries and Wildlife)New 11/89/6

    Influence of Ionizing Radiation on the Mechanical Properties of a Wood-Plastic Composite

    Get PDF
    AbstractThe focus of this study was to examine the potential benefits of irradiating polyethylene (PE)-based wood-plastic composites (WPCs) in order to enhance the mechanical properties of the WPC. The PE-based WPCs were irradiated, post extrusion, at dose levels of 0, 50, 100, 150, 200, and 250 kGy with an electron beam (EB). The irradiated WPCs were then evaluated using a third point bending test (ASTM D4761) along with scanning electron microscopy (SEM). It was found that ultimate strength and modulus of elasticity (MOE) increased with increasing dose level. Examination of the fracture surfaces of polyethylene revealed a distinct difference in failure between irradiated and non-irradiated surfaces

    Secondary HIV Infection and Mitigation in Cure-Related HIV Trials During Analytical Treatment Interruptions

    Get PDF
    To the Editor—We are writing to express concerns regarding facts reported in 2 recent Journal of Infectious Diseases articles pertaining to the ANRSLIGHT study, conducted in 18 clinical sites in France between September 2013 and May 2015. Initially, we were delighted to see the authors implemented several inclusion criteria that we believe were likely to ensure safety of participants during the analytical treatment interruption (ATI) that occurred during the trial, for example a nadir of CD4+ T-cell count of ≥300 cells/mm3 and an initial CD4+ T-cell count of ≥600/mm3. However, other aspects are dismaying, including the detailed identifying information about the index participant and partner. We fear it is possible to identify both persons from the elaborate medical and nonmedical history provided. After contacting the study Principal Investigator, Dr Lelièvre, through a European colleague, it appears there were no consents to disclose this information. Thus, we feel strongly that it was inappropriate to include such comprehensive, potentially identifying details

    Effects of fertilizer on inorganic soil N in East Africa maize systems : vertical distributions and temporal dynamics

    Get PDF
    Author Posting. © Ecological Society of America, 2016. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 26 (2016): 1907–1919, doi:10.1890/15-1518.1.Fertilizer applications are poised to increase across sub-Saharan Africa (SSA), but the fate of added nitrogen (N) is largely unknown. We measured vertical distributions and temporal variations of soil inorganic N following fertilizer application in two maize (Zea mays L.)-growing regions of contrasting soil type. Fertilizer trials were established on a clayey soil in Yala, Kenya, and on a sandy soil in Tumbi, Tanzania, with application rates of 0–200 kg N/ha/yr. Soil profiles were collected (0–400 cm) annually (for three years in Yala and two years in Tumbi) to examine changes in inorganic N pools. Topsoils (0–15 cm) were collected every 3–6 weeks to determine how precipitation and fertilizer management influenced plant-available soil N. Fertilizer management altered soil inorganic N, and there were large differences between sites that were consistent with differences in soil texture. Initial soil N pools were larger in Yala than Tumbi (240 vs. 79 kg/ha). Inorganic N pools did not change in Yala (277 kg/ha), but increased fourfold after cultivation and fertilization in Tumbi (371 kg/ha). Intra-annual variability in NO−3-N concentrations (3–33 μg/g) in Tumbi topsoils strongly suggested that the sandier soils were prone to high leaching losses. Information on soil inorganic N pools and movement through soil profiles can h vulnerability of SSA croplands to N losses and determine best fertilizer management practices as N application rates increase. A better understanding of the vertical and temporal patterns of soil N pools improves our ability to predict the potential environmental effects of a dramatic increase in fertilizer application rates that will accompany the intensification of African croplands.Earth Institute at Columbia University Cross-Cutting Initiative Grant; National Science Foundation PIRE Grant Grant Number: IIA-0968211; Bill and Melinda Gates Foundation Grant Number: OPP1023542-0
    corecore