54 research outputs found

    Impact of culture towards disaster risk reduction

    Get PDF
    Number of natural disasters has risen sharply worldwide making the risk of disasters a global concern. These disasters have created significant losses and damages to humans, economy and society. Despite the losses and damages created by disasters, some individuals and communities do not attached much significance to natural disasters. Risk perception towards a disaster not only depends on the danger it could create but also the behaviour of the communities and individuals that is governed by their culture. Within this context, this study examines the relationship between culture and disaster risk reduction (DRR). A comprehensive literature review is used for the study to evaluate culture, its components and to analyse a series of case studies related to disaster risk. It was evident from the study that in some situations, culture has become a factor for the survival of the communities from disasters where as in some situations culture has acted as a barrier for effective DRR activities. The study suggests community based DRR activities as a mechanism to integrate with culture to effectively manage disaster risk

    Unusual glitch activity in the RRAT J1819-1458: an exhausted magnetar?

    Get PDF
    We present an analysis of regular timing observations of the high-magnetic-field Rotating Radio Transient (RRAT) J1819-1458 obtained using the 64-m Parkes and 76-m Lovell radio telescopes over the past five years. During this time, the RRAT has suffered two significant glitches with fractional frequency changes of 0.6×1060.6\times10^{-6} and 0.1×1060.1\times10^{-6}. Glitches of this magnitude are a phenomenon displayed by both radio pulsars and magnetars. However, the behaviour of J1819-1458 following these glitches is quite different to that which follows glitches in other neutron stars, since the glitch activity resulted in a significant long-term net decrease in the slow-down rate. If such glitches occur every 30 years, the spin-down rate, and by inference the magnetic dipole moment, will drop to zero on a timescale of a few thousand years. There are also significant increases in the rate of pulse detection and in the radio pulse energy immediately following the glitches.Comment: accepted for publication in MNRAS, 7 pages, 7 figures, 1 tabl

    Gravitational waves from individual supermassive black hole binaries in circular orbits: Limits from the north american nanohertz observatory for gravitational waves

    Get PDF
    We perform a search for continuous gravitational waves from individual supermassive black hole binaries using robust frequentist and Bayesian techniques. We augment standard pulsar timing models with the addition of time-variable dispersion measure and frequency variable pulse shape terms. We apply our techniques to the Five Year Data Release from the North American Nanohertz Observatory for Gravitational Waves. We find that there is no evidence for the presence of a detectable continuous gravitational wave; however, we can use these data to place the most constraining upper limits to date on the strength of such gravitational waves. Using the full 17 pulsar data set we place a 95% upper limit on the strain amplitude of h 0 ≲ 3.0 × 10-14 at a frequency of 10 nHz. Furthermore, we place 95% sky-averaged lower limits on the luminosity distance to such gravitational wave sources, finding that dL ≳ 425 Mpc for sources at a frequency of 10 nHz and chirp mass 1010 M . We find that for gravitational wave sources near our best timed pulsars in the sky, the sensitivity of the pulsar timing array is increased by a factor of four over the sky-averaged sensitivity. Finally we place limits on the coalescence rate of the most massive supermassive black hole binaries

    Radio Follow-up of Gravitational-wave Triggers during Advanced LIGO O1

    Get PDF
    We present radio follow-up observations carried out with the Karl G. Jansky Very Large Array during the first observing run (O1) of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). A total of three gravitational-wave triggers were followed-up during the ≈ 4 months of O1, from 2015 September to 2016 January. Two of these triggers, GW150914 and GW151226, are binary black hole (BH) merger events of high significance. A third trigger, G194575, was subsequently declared as an event of no interest (i.e., a false alarm). Our observations targeted selected optical transients identified by the intermediate Palomar Transient Factory in the Advanced LIGO error regions of the three triggers, and a limited region of the gravitational-wave localization area of G194575 not accessible to optical telescopes due to Sun constraints, where a possible high-energy transient was identified. No plausible radio counterparts to GW150914 and GW151226 were found, in agreement with expectations for binary BH mergers. We show that combining optical and radio observations is key to identifying contaminating radio sources that may be found in the follow-up of gravitational-wave triggers, such as emission associated with star formation and active galactic nuclei. We discuss our results in the context of the theoretical predictions for radio counterparts to gravitational-wave transients, and describe our future plans for the radio follow-up of Advanced LIGO (and Virgo) triggers

    iPTF17cw: An Engine-driven Supernova Candidate Discovered Independent of a Gamma-Ray Trigger

    Get PDF
    We present the discovery, classification, and radio-to-X-ray follow-up observations of iPTF17cw, a broad-lined (BL) type Ic supernova (SN) discovered by the intermediate Palomar Transient Factory (iPTF). Although it is unrelated to the gravitational wave trigger, this SN was discovered as a happy by-product of the extensive observational campaign dedicated to the follow-up of Advanced LIGO event GW 170104. The spectroscopic properties and inferred peak bolometric luminosity of iPTF17cw are most similar to the gamma-ray-burst (GRB)-associated SN, SN 1998bw, while the shape of the r-band light curve is most similar to that of the relativistic SN, SN 2009bb. Karl G. Jansky Very Large Array (VLA) observations of the iPTF17cw field reveal a radio counterpart ≈10 times less luminous than SN 1998bw, and with a peak radio luminosity comparable to that of SN 2006aj/GRB 060218 and SN 2010bh/GRB 100316D. Our radio observations of iPTF17cw imply a relativistically expanding outflow. However, further late-time observations with the VLA in its most extended configuration are needed to confirm fading of the iPTF17cw radio counterpart at all frequencies. X-ray observations carried out with Chandra reveal the presence of an X-ray counterpart with a luminosity similar to that of SN 2010bh/GRB 100316D. Searching the Fermi catalog for possible γ-rays reveals that GRB 161228B is spatially and temporally compatible with iPTF17cw. The similarity to SN 1998bw and SN 2009bb, the radio and X-ray detections, and the potential association with GRB 161228B all point to iPTF17cw being a new candidate member of the rare sample of optically discovered engine-driven BL-Ic SNe associated with relativistic ejecta

    Radio Properties of Rotating Radio Transients I: searches for periodicities and randomness in pulse arrival times

    Get PDF
    We have analysed the long- and short-term time dependence of the pulse arrival times and the pulse detection rates for eight Rotating Radio Transient (RRAT) sources from the Parkes Multi-beam Pulsar Survey (PMPS). We find significant periodicities in the individual pulse arrival times from six RRATs. These periodicities range from 30 minutes to 2100 days and from one to 16 independent (i.e. non-harmonically related) periodicities are detected for each RRAT. In addition, we find that pulse emission is a random (i.e. Poisson) process on short (hour-long) time scales but that most of the objects exhibit longer term (months-years) non-random behaviour. We find that PSRs J1819-1458 and J1317-5759 emit more doublets (two consecutive pulses) and triplets (three consecutive pulses) than is expected in random pulse distributions. No evidence for such an excess is found for the other RRATs. There are several different models for RRAT emission depending on both extrinsic and intrinsic factors which are consistent with these properties.Comment: Accepted by MNRAS on 2011 July 2. Contains 11 pages, 4 figures, 4 table
    corecore