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ABSTRACT

We perform a search for continuous gravitational waves from individual supermassive black hole binaries using
robust frequentist and Bayesian techniques. We augment standard pulsar timing models with the addition of time-
variable dispersion measure and frequency variable pulse shape terms. We apply our techniques to the Five Year
Data Release from the North American Nanohertz Observatory for Gravitational Waves. We find that there is no
evidence for the presence of a detectable continuous gravitational wave; however, we can use these data to place
the most constraining upper limits to date on the strength of such gravitational waves. Using the full 17 pulsar data
set we place a 95% upper limit on the strain amplitude of 2o < 3.0 x 10~'* at a frequency of 10 nHz. Furthermore,
we place 95% sky-averaged lower limits on the luminosity distance to such gravitational wave sources, finding that
d; 2> 425 Mpc for sources at a frequency of 10 nHz and chirp mass 10'" M. We find that for gravitational wave
sources near our best timed pulsars in the sky, the sensitivity of the pulsar timing array is increased by a factor
of ~four over the sky-averaged sensitivity. Finally we place limits on the coalescence rate of the most massive

doi:10.1088/0004-637X/794/2/141

supermassive black hole binaries.
Key words: gravitation — pulsars: general

Online-only material: color figures

1. INTRODUCTION

The direct detection of gravitational waves (GWs) is a major
goal of experimental physics and astrophysics. One of the most
promising means of detecting GWs is through the precise timing
of an array of millisecond pulsars (MSPs). The concept of
a pulsar timing array (PTA) was first conceived of over two
decades ago (Sazhin 1978; Detweiler 1979; Hellings & Downs
1983; Romani 1989; Foster & Backer 1990). Twenty years later,
three main PTAs are in full operation around the world: the
North American Nanohertz Observatory for Gravitational waves

19 Binstein Fellow.

(NANOGrav; Jenet et al. 2009), the Parkes Pulsar Timing Array
(PPTA; Manchester 2008), and the European Pulsar Timing
Array (EPTA; Janssen et al. 2008). The three PTAs collaborate
to form the International Pulsar Timing Array (IPTA; Hobbs
et al. 2010), which will result in increased sensitivity to GWs
through more data and longer time spans than any single PTA.

PTAs are most sensitive to GWs with frequencies in the
nanohertz regime (i.e., 107° Hz-10~7 Hz). Potential sources
of GWs in this frequency range include supermassive black
hole binary systems (SMBHBs; Sesana et al. 2008), cosmic
(super)strings (Olmez et al. 2010), inflation (Starobinsky 1979),
and a first-order phase transition at the QCD scale (Caprini et al.
2010). The community has thus far focused mostly on stochastic
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backgrounds produced by these sources; however, sufficiently
nearby individual SMBHBs may produce detectable continuous
waves with periods on the order of years for masses in the range
108 Mu-10' My, (Wyithe & Loeb 2003; Sesana et al. 2009;
Sesana & Vecchio 2010). Several upper limits have been placed
on the strength of the stochastic background (Kaspi et al. 1994;
Jenet et al. 2006; van Haasteren et al. 2011; Demorest et al.
2013; Shannon et al. 2013) and continuous waves (Jenet et al.
2004; Yardley et al. 2010) but no successful detection has yet
been made.

In this paper we will use current-generation frequentist (Ellis
et al. 2012) and Bayesian (Ellis 2013) data analysis pipelines
to compute upper limits on the strain amplitude of continuous
GWs from SMBHBs in circular orbits. In Section 2 we briefly
review the radio observations and timing analysis. In Section 3
we describe the signal model used to describe the continuous
GWs in the PTA band. In Section 4 we describe, in detail,
the time domain likelihood function, the noise model, and the
frequentist and Bayesian search pipelines. In Section 5 we apply
our search and upper limit pipelines to the NANOGrav data set
and report our findings. In Section 6 we present some predictions
for future PTA sensitivities to continuous GWs and summarize
our results. In Appendices A—C we derive the form of the
frequency evolution of SMBHBs, and give full details on the
computational implementation of our Bayesian code.

2. OBSERVATIONS AND TIMING ANALYSIS

The observational data used for this analysis are the same
as those presented by Demorest et al. (2013)?°; the reader
is referred to that paper for a detailed description of the
observations and timing analysis. Here we present a brief review
of the relevant features of the data set. The timing data used here
were acquired during 2005-2010 using two radio telescopes, the
305 m Arecibo telescope, and the 100 m Robert C. Byrd Green
Bank Telescope (GBT). A total of 17 pulsars (8 at Arecibo, 10 at
the GBT, with J1713 + 0747 observed by both telescopes) were
monitored using a typical observational cadence of four to six
weeks between sessions. At each observing epoch, every pulsar
was observed using two separate receiver systems operating
at widely separated radio frequencies ranging from 327 MHz
to 2.3 GHz. The typical observation length was 30 minutes
per pulsar per receiver. All data were recorded using the
identical ASP (at Arecibo) and GASP (at the GBT) pulsar
backend systems (Demorest 2007). These systems processed
a typical radio bandwidth of 64 MHz using real-time coherent
dedispersion and pulse period folding, resulting in 2048 bin
full-Stokes pulse profiles averaged over one to three minutes in
4 MHz channels.

Pulse profile calibration, integration, and time of arrival
(TOA) determination was done using standard techniques via
the PSRCHIVE?' software package (Hotan et al. 2004). For each
pulsar all profiles in a given epoch were integrated in time to
form a single set of profiles across radio frequency. From these,
TOAs were measured separately in each 4 MHz radio frequency
channel. This resulted in a set of ~20-30 multi-frequency TOAs
ateach epoch, or ~500-2000 TOAs total for each pulsar over the
full data set. Before searching for the presence of GW in these
data, the rotational, orbital, astrometric, and interstellar medium
(ISM) properties specific to each pulsar—effects collectively

20" Currently, NANOGrav is timing 43 pulsars with baselines as long as nine
years. Full timing solutions and GW analysis papers will be forthcoming.
21 http://psrchive.sourceforge.net
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known as the timing model—must first be determined from
the TOA data. For this we analyzed the TOAs using both the
TEMPO??> and TEMPO2?* (Hobbs et al. 2006) timing software
packages and obtained identical results with both. Notable
features of the timing models used here include: spin frequency
and spin-down rate, but no higher frequency derivatives, were
fit for all pulsars; all five astrometric parameters (sky position,
proper motion, and parallax) were fit for all pulsars®*; time-
variable dispersion measure (DM) was included by fitting for an
independent DM value at each epoch, using the multi-frequency
TOAs;? intrinsic profile shape evolution with frequency was
included as a constant-in-time offset for each frequency channel,
and Keplerian and relativistic orbital elements, as appropriate
for pulsars in binary systems. All TOA data and final timing
solutions for this data set are publicly available online.?®

3. GWs FROM SUPERMASSIVE BLACK HOLE BINARIES

Pulsar timing residuals are defined as the difference between
observed TOAs of radio pulses and a deterministic timing model.
In this section we review the form of the residuals induced by
SMBHBs consisting of non-spinning black holes in a circular
orbit (e.g., Wahlquist 1987) and introduce our notation. Spin
effects are not likely to play any measurable role in the orbital
dynamics (Sesana & Vecchio 2010) and eccentric systems
(Roedig & Sesana 2012; Sesana 2013) will be addressed in
a future work, as we choose not to include eccentricity here.
The GW is a metric perturbation to flat spacetime defined in
terms of its two polarizations as

hap(t, Q) = 8, (Qhy (1, Q) + X (Qh (1, Q), (1)

where Q is the unit vector pointing from the GW source to
the Solar System Barycenter (SSB), and A, i, and e;‘b (A =
+, x) are the polarization amplitudes and polarization tensors,
respectively. The polarization tensors can be converted to the
SSB by the following transformation. Following Wahlquist
(1987), we write

e;b(Q) = "ha’/ﬁb - ﬁaﬁba 2)

e;b(g) = maﬁh + ﬁa”ﬁhv (3)
where

Q= —(sin @ cos ¢)x — (sin @ sin @)y — (cos 0)z, 4)

m = —(sin@)x + (cos @)y, (5)

i = —(cos O cos p)X — (cos 6 sinp)y + (sinH)Z, (6)

where X, y, and Z are the usual Cartesian coordinate unit vectors.
In this coordinate system, 6 = /2 — § and ¢ = « are the polar
and azimuthal angles of the source, respectively, where  and
o are declination and right ascension in the usual equatorial

22 http://tempo.sourceforge.net

23 http://tempo2.sourceforge.net

24 The best fit parallax for PSR J1640 + 2224 is consistent with zero and is
therefore not fit in the final timing model.

25 Models for pulsars J1853 + 1308, J1910 + 1256, and B1953 +29 did not
include DM variation measurement as only single-frequency data were
available for these.

26 http://data.nanograv.org
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coordinates, where the north celestial pole is in the Z direction
and the vernal equinox is in the x direction.

We will write our GW induced pulsar timing residuals in the
following form:

s(t, Q) = FF(Q)As,(t) + F*(Q)As, (¢), (7

where

Asa(r) = sa(ty) — sa(te), 3
and ¢, and #, are the times at which the GW passes the
Earth?’ and pulsar, respectively, and the index A € {+, x}

labels polarizations. The functions F* (Q) are known as antenna
pattern functions and are defined by

163 - Y — G- p)

Fr @) =5 —
1+Q-p

€))

(i - p)(i - p)
1+Q- p
where p is the unit vector pointing from the Earth to the pulsar.

Also, from geometry we can write*®

FXQ) = (10)

ty=t.— L(1+Q- p), (11)

where L is the distance to the pulsar. Given these definitions,
we can write the GW contributions to the timing residuals at
0-PN (Post-Newtonian) order as (Wahlquist 1987; Corbin &
Cornish 2010)

5/3
s.(t) = W[_ sin[2d(7)](1 + cos? 1) cos 2
— 2 cos[2D(t)] cos ¢ sin 2] (12)
5/3 . ,
sx(t) = W[— sin[2D(¢)](1 + cos” ¢) sin 2y
+ 2 cos[2®D(t)] costcos 2yr], (13)

where ¢ is the GW polarization angle and ¢ is the inclination
angle of the SMBHB. The orbital phase and frequency of the
SMBHB are

1

D(1) :(DO+32./\/1—5/3

(05" — w(1)™P) (14)

and

256 i
o(t) = wo (1 - ?MS/%ﬁ”z) , (15)

where ®( and wy are the initial values at the time of our first
observation, the chirp mass is defined by M = (mm,)*/ /(m+
m»)'/°, where m; and m, are the masses of the two SMBHs,
and d; is the luminosity distance to the SMBHB source. See
Appendix A for a more complete derivation of the frequency
evolution of the binary including important approximations that
can be made. For our purposes here we will just note that
orbital frequency evolution over our observing time span is

27 Technically, this is the time that the GW passes the SSB; however,
following convention we will label this as the Earth time and will later refer to
the Earth-term, keeping in mind that, in practice, all variables are referenced to
the SSB.

28 Here we use geometrized units where G = ¢ = 1.
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very unlikely while frequency evolution over the Earth—pulsar
light travel time is almost certain for sources with reasonably
large chirp masses (i.e., M ~ 3 x 108 Mg; see, e.g., Sesana &
Vecchio 2010). We can relate the GW frequency to the orbital
frequency of the binary by wg,, = 2wy for circular orbits. Note
that we use the observed redshifted values. For example, the
chirp mass and orbital angular frequency in the rest frame are
M, = M/(1 +z) and w, = wo(1 + 7), respectively, where z is
the cosmological redshift.

From the signal model presented above, we see that our
parameter space is eight-dimensional and the continuous wave
parameter space vector is

Ao =1{0,¢,DQo, ¥, 1, M, dp, wo}. (16)

However, because typical pulsar distance uncertainties are on the
order of tens of percent (Verbiest et al. 2012), in order to attain
phase coherence in our search algorithm, we must allow the
pulsar distance to vary as a search parameter as well. Henceforth,
we will adopt the notation that A, = {Ag, L}, where L, is the
distance to the ath pulsar, in order to denote the fact that the
pulsar distance is a search parameter. The above parameter set
represents the default parameters used in our search; however,
when setting upper limits we wish to parameterize the upper
limit in terms of the strain amplitude

MG fo PP

ho =2
0 d,

A7)

Since the luminosity distance d; is only a scale parameter we
use hy as a free parameter in the waveform instead of luminosity
distance when computing upper limits.

4. SEARCH TECHNIQUES
4.1. Likelihood Function for PTAs

It was shown in van Haasteren & Levin (2013) (and modified
in Ellis 2013 to include deterministic sources) that the likelihood
function for the residuals, marginalized over the timing model
parameters, can be written as

exp[—1 6t — )T G(GTCG)'GT (51 — 5)]

Stlp, L) =
p(St|p, ) \/(zn)(NTOA_’”)det(GTCG)

(18)
where 8t is a vector of the pulsar residuals, ¢ are parameters that
describe the noise in the pulsar residuals, A are the parameters
that characterize the continuous GW signal,” and C is the
covariance matrix of the noise. In practice, the noise in pulsar
timing residuals is non-Gaussian due to ISM scintillation effects
which are manifested through a time varying pulse intensity.
Nonetheless, the noise in each residual is modeled very well
by a Gaussian with zero mean and standard deviation equal
to the uncertainty on the TOA. In other words, the noise in
the weighted (by the individual TOA errors) residuals is very
well approximated as a Gaussian. As will be detailed in the
next section, we include these error bar weights in our noise
covariance matrix. Thus, assuming the noise is Gaussian® is
justified. Here G is an Ntoa X (Ntoa — m) matrix with Nyoa the

29 We have dropped the o subscript on the parameter vector here as we are
only considering a single pulsar.

30 Note that here Gaussian noise simply means that the data obey a
multivariate Gaussian probability distribution function. This does not mean
that we assume the data is white.
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number of TOAs and m the number of fitted parameters in the
timing model. The derivation of the G-matrix approach can be
found in van Haasteren & Levin (2013) and will not be explored
here. The matrix G” is a projection operator that projects our
data ¢ onto the null space of the timing model design matrix
M, that is, it projects the data into a subspace orthogonal to the
linearized timing model. In the timing analysis used here, DM
variation and profile frequency evolution effects are part of the
timing model, and these terms are included when constructing
the G matrix. In this way we have fully taken into account the
timing model fitting procedure.

For this work we will assume that the noise in the residuals
between pulsars is uncorrelated. In other words, we are assuming
that the stochastic GW background will be negligible compared
to the intrinsic noise in each pulsar. In general this is not likely
to be a good assumption when we would expect a detection of a
single GW source. Furthermore, terrestrial clock errors (Hobbs
et al. 2012) and errors in solar system ephemerides (Champion
et al. 2010)3! can also cause correlations between the noise
in the residuals from different pulsars, with however different
angular correlation properties on the sky than are expected from
GWs. The effects of omitting the correlations in the likelihood
function are unknown and will be the subject of future work.
Under these assumptions, the likelihood function for the full
PTA can be written as

Npsr

p@tIx) = [ | pOtalra), (19)

a=1

where 8¢, and A, and the residuals and model parameters for
the «oth pulsar, respectively, and A is the full continuous wave
(CW) parameter vector including pulsar distances for all pulsars.
In cases where we fix the noise values, we can write the log-
likelihood ratio of a model with a single continuous GW to a
model with just noise as

Npsr

1
A=Y [(StaIS(Xa)) -3 (S(Xa)IS(ka))] . (20

where the inner product between two time series x and y is
(xly) =xTG(GTCcG)'GTy. (1)

In the remainder of the paper we will refer to the signal-to-noise
ratio in the following form

Npsr 1/2
p=+2InA)= (Z(S(M)IS(M))) ; (22)

a=1

where the brackets denote the expectation value over many noise
realizations.

4.2. Noise Model

In the above section we have derived the likelihood function
used for our analysis; however, we have not specified the form
of the noise covariance matrix C. Previous Bayesian analysis
schemes (van Haasteren et al. 2009, 2011; van Haasteren &
Levin 2010, 2013; Ellis et al. 2012; van Haasteren 2013; Ellis

31 Note that current uncertainties in the ephemerides are small enough that
they will likely not pose any problems for GW analyses.
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et al. 2013; Ellis 2013) have used a power-law red noise model
and EFAC (constant multiplier on the TOA uncertainties) and
EQUAD (additional Gaussian white noise added in quadrature
to EFAC noise) parameters to describe the white noise, with a
covariance matrix of the form

C = E*W + Q2 + C™(Ared, Yred)s (23)

where E is the EFAC parameter, W = diag{oiz}, with o; the
uncertainty on the ith TOA, Q is the EQUAD parameter, and
Cleq 1s an analytic expression of the red noise amplitude A, and
spectral index y;eq. It is worth noting that we use no EFAC or
EQUAD parameters in our pulsar timing model fit but instead
include them directly in our noise model. The EFAC is simply
a parameter that quantifies any additional uncertainty in the
TOA uncertainties and the EQUAD parameter quantifies any
additional white noise that is not related to the formal TOA
uncertainties. In principle, a different EFAC value should be
used for each pulsar timing backend as this parameter is related
to intrinsic receiver noise; however, in this five-year NANOGrav
data set, only one backend per telescope was used.?? Therefore,
we are justified in only using one EFAC parameter per pulsar.
This noise model is quite general and works well for many
pulsars; however, the size of the matrices is quite large (on the
order of 10° x 10%) and inversion is a large bottleneck in the
analysis pipelines. Furthermore, current NANOGrav observing
schemes produce large sets of multifrequency observations that
are essentially simultaneous. One may be tempted to simply
perform a weighted average of the TOAs and work with the
new reduced data sets but in the Bayesian scheme we must
marginalize over the timing model parameters analytically and
it is unclear how to carry out this process for epoch-averaged
TOAs. Because of this, we have developed a framework to
essentially work backward from the marginal likelihood to
derive a nearly exact averaging scheme. First we re-write our
noise covariance matrix

C=N+UCUT, (24)

where C is a g x q reduced covariance matrix with g the number
of epochs33 in our data set, N is a white noise covariance matrix
of the EFAC and EQUAD terms, and U is the “exploder” matrix
that maps epochs (columns) to the full set of TOAs (rows). If
we now make use of this new formalism, the likelihood function
is then

exp [ — 3@t — )T N"'@1 —5) —d"3"'d)]

p@ti$. 1) =

)

\/ @)= det(C) det(GT N G) det(%)

(25)
where we have used the Woodbury Lemma®* to compute
the inverse and determinant of C, N7l = G(GTNG)'GT,
d=UTN"'(6t —s),and X = (C"' + U N~'U). Note that d
here are essentially daily averaged residuals. For NANOGrav
data sets the number of epochs per pulsar is on the order of
30-100, while the total number of TOAs per pulsar is on the
order of 10°, thus the inversions (here N is diagonal and N~!
can be pre-computed, thus the only dense matrix inversion is

32 PSR J1713+0747 is observed at both Arecibo and GBT; however, we find
that there is very little difference in the measured EFAC parameters for the two
telescopes.

33 Here we have defined an epoch to be one day.

¥ (A+DBETY 1= A1'— A 'DB'+ETA'D)TETA ! and

|[A+ DBET| = |A||B||B~' + ETA~!D|
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>~ 1 required in this likelihood function scale as ¢* as opposed
to n®, resulting in computational speed ups of several orders of
magnitude. Furthermore, the epoch-averaged covariance matrix
C can take on several forms depending on the red noise model
used; however, as long as it is a slowly varying function of
the TOAs (i.e., a truly red process) then this formalism is
completely valid.

In order to attain further computational speed ups and to gain
more control over the low frequency component of our noise
model we make use of the methods described in Lentati et al.
(2013), but now applied to a single pulsar instead of the full
PTA. This method relies on explicitly splitting up the red and
white components of the residuals, so that the residuals are now
written as

5t = M(S)‘;' + Nwhite + Pred + S, (26)

where M is the design matrix (an Ntos X m matrix composed
of the functional form of the linearized timing model (column)
evaluated at each TOA (row)), nynite and nyq are the white and
red components of the residuals, respectively, and §& are the
timing model parameter offsets. It is possible to expand the red
noise piece in a Fourier series

Nmode 27.[ t 27.[ t
Nred = Z |:aj sin (TJ) +bj cos (Tj)] = Fa, (27)

j=1

where a is a vector of the concatenated sine and cosine
amplitudes, T is the total time span of the data, and F' is an
Ntoa X 2Nmode matrix with alternating sine and cosine terms
with Npoge the number of frequencies used. Now, we assume
that the underlying ensemble average red noise process is wide-
sense stationary and can be completely described by a power
spectrum. Then, by orthogonality, the Fourier coefficients a will
be diagonal with components

gij = (aa’);; = &, (28)

where there is no sum over i and the elements of ¢, denoted
{¢;} are the coefficients of the model power spectrum of the red
noise process in the residuals. If the red noise process is wide-
sense stationary, then this relation is always true irrespective
of the sampling as all information about the uneven sampling
here comes from the Fourier design matrix F. Thus, we can
write the covariance and epoch-averaged covariance matrices,
respectively, as

C=N+FgpFT (29)

C=FgFT, (30)

where F is a q X Nmode matrix and is constructed in the same
manner as F but the epoch-averaged TOAs are used as opposed
to the full set of TOAs. As is done in Lentati et al. (2013), it is
possible to treat each diagonal element of ¢ as a free parameter;
however, for this work we chose to parameterize it by a

power law

3= Yre

w-ziAi“ S ydf~‘3 (€29)
T 1272 \ Sy o

where f; is the ith Fourier frequency assuming Nyquist sampling.
In general, any Fourier-based method with finite length data sets
and especially with irregular sampling will suffer from spectral
leakage whereby power from the lowest frequencies will leak
into the higher frequencies. In effect, this makes Fourier-based
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methods sensitive to the low-frequency cutoff. However, it was
shown in van Haasteren & Levin (2013) that including the effects
of the timing model (specifically the quadratic spin-down in
this case) in our analysis acts as a window function that fully
removes any sensitivity to the low-frequency cutoff, thereby also
removing nearly all spectral leakage. We have done extensive
simulations to test this notion and have found no evidence for
spectral leakage and no bias in red noise parameter estimation
and waveform reconstruction.

In the course of our single pulsar noise analysis (J. A.
Ellis et al. 2014, in preparation) we found that the addition
of an extra white noise parameter was needed to accurately
describe the data. This new white noise term incorporates a
correlation among frequency channels (within a given epoch)
while still remaining independent of other epochs. In other
words, this white noise term accounts for epoch-to-epoch
fluctuations as opposed to fluctuations within an epoch. We defer
to another paper the inclusion of pulse-jitter noise from pulsar
magnetospheric activity but point out that our inferred extra
term may be the same as jitter noise known to be present in all
well-studied pulsars (Cordes & Shannon 2010). This parameter
is quite easy to incorporate as it is simply an EQUAD-like
parameter in the epoch-averaged sense, that is,

J=UJu" = AULU", (32)

where _Z is our frequency correlated EQUAD parameter and I,
is the identity matrix in the epoch-averaged space. With this, we
have our final noise model with a total covariance matrix of

C=N+U(FoF" + _#1,)U7, (33)
and noise parameter vector

¢ =1{E, Q. 7, Ared, Yred}- (34)

Throughout the remainder of the paper, this noise model is
always used for all pulsars.

4.3. Fp-Statistic

The F), statistic was first derived from the likelihood function
of Equation (18) in Ellis et al. (2012, hereafter ESC12) as a
“total-power” frequentist detection statistic. We will not derive
the full expression here (see Appendix B for an alternate
derivation to ESC12), but rather we will explain its functional
form and discuss its statistics. First we define the following
harmonic basis functions:

1
Bl(t) = —73 SinQwo?) (35)
0
5 1
B3(1) = —75 cos(2wot), (36)
,

0

where, again, o is the orbital angular frequency of the SMBHB.
Following ESC12, the F), statistic is written as

Npsr
2F, =) PLOYP]. (37)

a=1
where we have assumed Einstein summation notation over latin
indices, P, = (8t]| B, (1)), Qj?‘j = (B;"|Bj‘) and the formal sum
is over all pulsars in the array. An intuitive way to think of this
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Figure 1. Histogram of ), statistic values (top panel) across all independent
frequencies (black (blue) histogram) and for 100,000 realizations of simulated
data with noise parameters measured from the real data (gray (green) histogram).
The red dashed curve is the probability distribution function for a x 2 distribution
with 34 (i.e., 2Nps;) degrees of freedom. The lower panel shows the p-value from
a KS test comparing the F), statistic for each pulsar to a x? distribution with two
degrees of freedom. The solid line represents the 3¢ threshold for the p-value.

(A color version of this figure is available in the online journal.)

statistic is a weighted (by the noise power spectral density) sum
of the power spectrum of the residual data done in the time
domain by making use of a harmonic time domain basis. It was
shown in ESCI12 that 2F), follows a x? distribution with 2Npgr

degrees of freedom and non-centrality parameter p> such that
(2F,) = 2Ny + p°. (38)

Figure 1 shows the distribution of the F, statistic (top panel)
for both real and simulated data as well as a p-value test (bottom
panel) for each pulsar, where we compare the single-pulsar F),
distribution to the expected x? distribution. To compute the F,-
statistic, we have used the maximum a posteriori noise values
obtained in a previous single-pulsar noise analysis to construct
the noise covariance matrix. Since we do not have independent
realizations of our data, we compute the F),-statistic for each
independent®® frequency bin and then construct a histogram of
the results. If our noise model is a good description of the true
noise in our data and there is no GW present in the data then
this distribution should follow the correct x? distribution. We
see from Figure 1 that the F,-statistic values do indeed follow a
x?2 distribution with 2 Nps: degrees of freedom. The black (blue)
curve in the top panel of Figure 1 shows the aforementioned
histogram along with the x? distribution in the dashed gray (red)
line. The p-value that results from a Kolmogorov—Smirnov (KS)
test comparing the 2, and x? (with 34 degrees of freedom)
distributions is 0.33, showing good agreement between our data
and the expected 2 distribution. As a cross-check, we have also
simulated 100,000 data sets with the measured noise parameters
and have evaluated the F), statistic for each. This distribution is
plotted as a gray (green) histogram in the figure and it is obvious
that this distribution follows a x> distribution with 34 degrees of
freedom nearly perfectly. We have also performed a similar test
but for each pulsar separately. In the lower panel of Figure 1 we

35 Note that the frequencies are not completely independent since our data are
irregularly sampled. The frequency bins were chosen here assuming a cadence
of two observing sessions per month, giving a maximum frequency of

fmax = 8 x 1077 Hz and minimum frequency of

Fmin = 1/ Tops = 6 x 1072 Hz.
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carry out the same KS test mentioned above but now compute the
JF, statistic values for each pulsar individually and then compare
to a x 2 with two degrees of freedom. The solid line corresponds
to the p-value at which we should reject the null hypothesis
that the two distributions are the same with 99.7% confidence.
We see that with the exception of one pulsar, J1640 + 2224, all
others lie above this threshold value. This indicates that our noise
model for all pulsars, except for J1640 + 2224, provides a good
description of the true noise in the data set. Better noise models
for this pulsar are currently being explored (J. A. Ellis et al. 2014,
in preparation). Since our full 17 pulsar F-statistic distribution
is totally consistent with the expected x2 distribution and PSR
J1640+2224 does not bias the overall PTA distribution, we use
the standard noise model described in Section 4.2.

For the detection problem, we are interested in the false-
alarm-probability (FAP), that is, the probability that a measured
value F, exceeds a given threshold F, o when no signal is
present. From ESC12, the probability distribution of F, when
the signal is absent is

/2-1

po(Fp) = exp(—=Fp), (39)

14
(n/2 —1)!

where 7 is the number of degrees of freedom (2N, in this case).
The corresponding FAP is then written as

n/2—1
Po(Fp)dF, = exp(—=Fpo) Y
k=0

00 k
p.,0

T (40)

PF(}—[),O):/

]:pﬁ

In a search over GW frequencies (the only free parameter in the
JFp-statistic) we will incur a trials factor such that the resulting
FAP for the search is

Pi(Fpo)=1—[1 = Pe(F,0l", (41)

where Ny is the number of independent frequencies. For this
work we place our detection threshold on F, such that the
corresponding FAP is less than 10~*. The results of performing
this search on the five-year NANOGrav data set will be
presented in the next section.

4.4. Bayesian Method

The Bayesian search pipeline in this work is very similar to
that of Ellis (2013, hereafter E13). Here we use an MPI-enabled
Parallel Tempered Markov Chain Monte Carlo (PTMCMC)
sampler’® (see E13 and Appendix C.1 for details on the
implementation). In this work we use two “modes” of operation
for the Bayesian search. The first is the most general in which we
evaluate the full likelihood function of Equation (18) and allow
both the GW parameters, A, and the noise model parameters, ¢
to vary simultaneously. In principle, this is the more desirable
setup as it allows the uncertainty in our noise model to propagate
into the measured GW parameters and also accounts for any
correlations between the noise and GW parameters. This mode
does require significantly more computational power as the
number of search parameters in the MCMC is quite large. The
total parameter space consists of eight GW parameters, Ny
pulsar distances, and 5 x N, noise parameters; this comes to
110 parameters for the full 17 pulsar array.

The second mode is when we fix the noise parameters to their
maximum a posteriori values obtained from a previous single

36 hitps://github.com/jellis 18/PAL
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pulsar analysis. All previous GW searches for single sources
have been performed in this manner (Jenet et al. 2004; Yardley
et al. 2010; Babak & Sesana 2012; Ellis et al. 2012; Petiteau
et al. 2013; Ellis 2013), which is justified if the noise model
only contains white noise and the GW signal present in any
single data set is weak. If the noise model contains only white
noise, there will be little to no correlation between the GW
parameters and the noise parameters, and if the signal is weak
then it will not affect the single pulsar noise analysis. However,
there is some evidence of red noise in our pulsars and because
of the highly varying noise levels among pulsars, it is likely
that a detectable source would be seen in the best timed pulsars
individually. Therefore, this type of Bayesian analysis is not
robust and could possibly lead to biased results; nonetheless,
we will carry out this mode for comparison purposes in this
study. Note that we will have the same problem with the F,
statistic. Possible methods to ameliorate this problem in fixed-
noise searches are being explored and will be the subject of a
future paper.

In a Bayesian sense, the detection problem is an application of
model selection and the upper limit problem is an application of
parameter estimation. The upper limit problem will be discussed
in the next section. The model selection technique is very
similar to that discussed in E13 and we refer the reader there
for more details (see Appendix C.2 for more details on the
implementation). If we want to perform model selection to claim
a detection or compare different waveforms then we can make
use of the Bayesian odds ratio between models “A” and “B”

_ pdIHy) p(Ha)
PIHp) p(Hp)'

where d represents the measured data and H 4 and Hp are two
alternative hypotheses. The first factor is known as the Bayes
Factor, which is our confidence in one model over the other
based on the data (henceforth we will denote the Bayes factor
as BB) and the second term is the prior odds ratio for models A
and B, which describes our prior belief in both models. In this
paper we consider only the Bayes factor, and assume the prior
odds are even. (The choice of the prior odds will determine the
false-alarm rate of a detection scheme based on the odds ratio
(Vallisneri 2012).

In this work we wish to compare the signal model ; parame-
terized by {A, ¢} to the null-hypothesis model H, parameterized
by ¢. When we allow the noise and GW parameters to vary si-
multaneously we will need to compute the evidence for both
models, H; and Hj, separately. On the other hand, when we
fix the noise parameters we can simply evaluate the likelihood-
ratio in (20) and use this to compute the evidence. In this case,
since the null-hypothesis model has no free parameters, the
Bayes factor is simply given by the evidence computed using
the likelihood ratio. In practice, to compute the evidence we
make use of thermodynamic integration as detailed in E13 and
Appendix C.2. The results of our Bayesian search and verifica-
tion on injections will be discussed in the next section.

(42)

4.4.1. Priors

In a Bayesian analysis, especially when using parallel tem-
pering and thermodynamic integration, it is very important
to choose reasonable priors so that we are not exploring ar-
eas of parameter space that have been ruled out by previ-
ous experiments. We choose isotropic priors on all angular
parameters and uniform priors in the log of the chirp mass
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with M e [108, 10'°] M, log of the luminosity distance with
d; € [1,10*]Mpc, and log of the frequency of the GW with
few € [6 % 107%,4 x 1077] Hz. We impose an additional
condition on the strain amplitude such that ho(M, dp, fon) <
href(fgw/f0)2/3, where h,r = 1 x 10713 and fo = 10~% Hz.
This value is chosen so that the maximum strain is well above
the level of detection. Essentially this is a cheap way to impose
a correlated prior on chirp mass, luminosity distance, and GW
frequency. The normalization is computed through Monte Carlo
integration. For the pulsar distance prior we use the current elec-
tromagnetic (EM) measurements either from timing parallax
or very long baseline interferometry corresponding to the best
measured values taken from Verbiest et al. (2012; 10 pulsars)
if available, otherwise, we use the values from the Australia
National Telescope Facility (ATNF) pulsar catalog (Manchester
et al. 2005)*7 which have distances based on dispersion mea-
sure and the NE2001 Galactic electron-density model (Cordes
& Lazio 2002, 2003). For pulsars without parallax distances we
assume a 20% uncertainty on the distance. Using this informa-
tion, we write the distance prior as follows

Npsr 2
S (Lo — LEM)

L=]]— ), 43
) oot V2ma? exp( 202 (“43)

where LEM is the best measured distance for the ath pulsar
and o, is the 1o uncertainty on that distance measurement.
In principle it would be more correct to use a Gaussian prior
for the parallax, which is proportional to L~!. If the variance
on the parallax is quite large then the corresponding prior on
distance will differ significantly, namely it will have a long tail
toward higher distances. However, for the pulsars used in this
analysis, the distance uncertainty is small enough that the two
prior distributions are effectively the same and we are safe in
using a Gaussian prior on the pulsar distance itself; however, for
future analyses we will move to Gaussian priors in L™

For our noise parameters, we use priors that are uniform in the
EFAC in the range [0.5, 5], uniform in the log of the EQUAD
with EQUAD € [107?, 107°] s, uniform in the log of the jitter
value with the same range as the EQUAD, uniform in the log of
the red noise amplitude with Aq € [107'%, 107!, where the
amplitude is in GW units, and uniform in the red noise spectral
index with yq € [1, 7]. We impose a further prior on the red
noise such that the variance o2, is less than the unweighted
standard deviation of the pulsar timing residuals, where

Ored = /1 dfP(f)

/T

Yred—!

1 Ared T 2 (44)
— ns,
V Vred — 1\10-1 1 yr

with T the total observation time and P( f) the power spectrum
of the red noise. This prior essentially restricts the model from
considering red-noise-dominated residuals, which is a very good
approximation (Perrodin et al. 2013; J. A. Ellis et al. 2014, in
preparation). This prior is chosen because it leads to much more
computationally efficient runs by allowing us to run fewer high
temperature chains in the Thermodynamic Integration scheme
(see Appendix C.2 for more details). In principle this red noise
prior is illegal in the sense that it uses the data (i.e., the variance

=2.05

37 http://www.atnf.csiro.au/people/pulsar/psrcat/
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Figure 2. Fraction of S/N that each pulsar contributes (black (blue) points).
We see that PSR J1713 + 0747 dominates the total S/N. The gray (green) curve
is a simple 1/0, scaling which matches the measured S/N values quite well
showing that the overall variance of the noise for each pulsar is the dominating
factor in determining the overall S/N.

(A color version of this figure is available in the online journal.)

of the residuals); however, this prior restricts access to an area of
parameter space that is not supported by the likelihood function.
Therefore, by omitting this area of parameter space the evidence
calculation for each model, H; and H,, will be biased slightly
low. Howeyver, the likelihood function evaluated at this area of
parameter space is essentially zero, and this slight bias will be
negligible.

5. RESULTS

In this section we report the results of our frequentist and
Bayesian searches, provide verification of the pipeline on
injected signals, and report on several upper limits.

5.1. Verification

First, it is interesting to determine how much each pulsar in
the 17 pulsar array will contribute to the overall S/N (signal-
to-noise ratio) when a GW is present. In Figure 2 we plot
the fraction o4 /P01, Where p, is the single pulsar S/N, for
each pulsar in the array. To compute this fraction we simulate
5000 S/N = 10 GW realizations (with parameters drawn from
isotropic distributions in all angles and distributions uniform
in the log of chirp mass and frequency) and calculate the
single pulsar and total PTA S/N from Equation (22). The
black (blue) points in the plot show the mean and standard
deviation of the aforementioned ratio for each pulsar and the
gray (green) curve is a simple naive scaling of 1/02, where
o, is the weighted rms of the ath pulsar’s TOA uncertainties.
It is obvious that J1713+0747 contributes more than 55% of
the S/N on average, and PSRs J1909—3744, J0030+0451, and
J0613—0200 contribute ~10% on average. As we see from
the gray (green) curve, this is very consistent with the overall
scaling with the inverse of the variance of the noise; however,
PSRs J0030+0451 and JO613—0200 carry a higher percentage
because they are located opposite the bulk of other pulsars on
the sky, and therefore will contribute more to the S/N for GWs
coming from that side of the sky due to the antenna pattern
response. This calculation does not mean that we advocate only
timing the pulsars with the highest timing precision. Although
many of the lower timing precision pulsars do not help with
continuous GW detection or parameter estimation, they are
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essential for detection and parameter estimation of a stochastic
GW background (see, e.g., Siemens et al. 2013).

The fact that one pulsar dominates the total S/N means that
it will be harder to make a confident GW detection as we re-
quire the same GW signal (with quadrupolar correlations) to be
present in all pulsars. In other words, if the GW is only “seen” in
one or two pulsars then it is hard to distinguish it from some other
effect due to the pulsar timing model, ISM effects or some other
systematic effect. This also implies the need to run a Bayesian
analysis where both the noise and GW parameters are allowed
to vary simultaneously. This does not mean that a continuous
GW would not be a valid interpretation of a loud sinusoidal sig-
nal in one pulsar, only that statistically we do not have enough
information to confidently claim a detection. Furthermore, if
we did have a loud detectable signal, parameter estimation
would be quite poor with the current NANOGrav PTA as there
would be large degeneracies in the sky location (due to the
small effective number of detector baselines), making sky lo-
calization and binary orientation estimates very poor. However,
NANOGerav is currently timing 43 pulsars with microsecond or
better precision. Also, new ultra-wideband receivers (DuPlain
et al. 2008) have increased timing precision by a factor of ~1.7
for many of the pulsars in this five-year data set. More pulsars
and better timing precision could help ameliorate some of the
limitations we have with the five-year data set.

Despite the potential limitations discussed above, we verify
the efficacy of our pipeline by running both the frequentist
and Bayesian pipeline on a synthetic data set with an injected
GW source. To create the synthetic data set we first compute
the residuals of our 17 NANOGrav pulsars using the TEMPO2
(Hobbs et al. 2006) package. Next we subtract these residuals
from the site arrival times, thereby producing a new set of arrival
times that match our timing model perfectly. To each set of
idealized TOAs we then add a Gaussian noise process with the
same characteristics as those measured in the real data, and a
GW signal using the fully evolving signal model. We then use
these new TOAs to produce a set of synthetic residuals. For this
simulation we have chosen to inject a signal with S/N 10 and
parameters A = {0 = 2.07, ¢ = 5.4, fou =4 X 10~8Hz, M =
5x 108 Mg, d;, = 1.0Mpc, ¥ = 0.78, 1 = 0.26, ®y = 0.53}.

The F, statistic pipeline was run on this synthetic data
set. Since we are treating this injection as if it were a true
blind search, we must first run a single-pulsar noise analysis to
determine the maximum a posteriori noise parameters; however,
since a strong continuous GW and red noise will be covariant we
have included a single frequency sinusoid as part of our noise
analysis for each pulsar. This is implemented by simply adding
a free amplitude and frequency parameter to the noise model
discussed above. While this may appear to be special treatment
for the injected signal, we have run the same noise model on the
real data and find no evidence for any sinusoidal features. After
we have obtained the maximum a posteriori noise parameters
(not including the sinusoid parameters), we use these values to
construct the noise covariance matrix for use in the F, statistic
as well as the fixed-noise Bayesian search. By performing the
noise search with an included sinusoid but not including it in
our noise covariance matrix in the subsequent GW analysis, we
are sidestepping the problem of the GW being absorbed into red
noise parameters.

We have carried out this analysis and the results are shown in
Figure 3 where we plot F, versus GW frequency when using the
measured noise values (black) and the true injected noise values
(gray). The vertical dashed line indicates the injected frequency
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Figure 3. 7, statistic evaluated over the frequency range fow € [1/T,3.3 x
10~7] Hz. The horizontal dashed line corresponds to our detection threshold of
FAP = 10~* and the vertical dashed line denotes the injected frequency. The
black and gray curves are the J,-statistic values when using the measured and
true noise parameters, respectively. See text for more details.

and the horizontal dashed line represents our detection threshold
corresponding to an FAP of 107*. To compute the total FAP
over all frequencies we make use of Equation (41) and choose
Ny = 324, resulting in a total FAP of 1.6 x 108 which is
a decisive detection. The number of independent frequencies
is difficult to calculate when we are using many data sets
with very irregular sampling. In this work we have chosen
Ny = 324 as this corresponds to fgw € [1/T,3.3 x 1077]
and A fg = 107 Hz. The upper limit on frequency was chosen
because our approximate observing cadence is 2.5 weeks ™! and
the frequency spacing was chosen by imposing the condition
that the autocorrelation function of F, when no signal is present
drops to half of its maximum value at that frequency lag. This
analysis shows us that we can indeed detect a continuous GW
if it is present in our data by conducting a fully blind search;
however, we also see that our results will not be conclusive
as there are several frequencies at which the FAP is above
our threshold value. From comparison with the true-noise case,
we see that the uncertainty (and residual correlations between
GW and noise parameters) in the noise parameters can lead to
confusing results. This again is mostly due to the fact that our
sensitivity is dominated by a small number of pulsars. Because
of this, we caution against using a fixed-noise method to make
final detection statements but instead advocate these methods as
a first round in a suite of analyses.

Both Bayesian pipelines (with and without varying noise pa-
rameters) were run on this synthetic data set. For both runs
we have used PTMCMC and thermodynamic integration as dis-
cussed in Appendix C.2. Due to the large parameter spaces when
using the full GW and noise model, we have chosen to use only
the pulsars that contribute more than 1% to the injected S/N, re-
sulting in six pulsars, J1713 + 0747, J1909—-3744, B1855 + 09,
JO030+ 0451, J0O613—0200, and J1012 +5307. Here we use the
same noise parameters as mentioned above for our fixed-noise
search. Even though these estimates are different from the true
noise parameters, we nonetheless achieve a log-Bayes factor of
27.4 for the fixed-noise search (a log-Bayes factor greater than
five is considered decisive evidence). However, as we mentioned
earlier, we should not totally trust this level of evidence as it does
not fully incorporate our uncertainty in the noise model. When
we run an analysis where we allow the noise and GW parame-
ters to vary simultaneously, we only achieve a log-Bayes factor
of 5.35. While still decisive, this search is much less sensitive to
the GW; nonetheless, this search is the most robust and will be
the real test as to whether or not one can trust a real GW detec-
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Figure 4. 7, statistic evaluated over the frequency range fow € [1/T,3.3 x
10~7] Hz. These frequencies were chosen based on the fact that the approximate
cadence is 2.5 week~!. The dashed, dash-dotted, and dotted lines represent
the value of 7, that gives an FAP of 0.1%, 0.5%, and 1%, respectively. Here
we note that there is no evidence for a detection and the data are consistent with
the null hypothesis.

tion candidate. Of course these results could change depending
on the noise realization or GW parameter combinations. A more
detailed study of this is warranted but beyond the scope of this
paper. Nonetheless, the large spread of overall noise levels in
modern PTAs will most likely make the confident detection of
a continuous GW very difficult.

5.2. Search Results

First we will discuss the results of the F, statistic search
on the real 17 pulsar NANOGrav data. To carry out the
analysis we have computed F, for many frequencies with
Jew € [1/T,3.3 x 10~7] Hz. These frequencies were chosen
based on the fact that the approximate cadence is 2.5 week .
The results of this search are shown in Figure 4, where the solid
black line is the value F, at each frequency; and the dotted,
dash-dotted, and dashed lines are the value of 7, corresponding
toa 1.0%, 0.5%, and 0.1% FAP, respectively, where these values
are calculated from Equation (40). Furthermore if we maximize
F, over frequencies then the total FAP, accounting for the
trials factor Ny, is very nearly 1, indicating that we should
accept the null hypothesis (no visible GW signal) with very
high confidence.

We will now briefly discuss the results of both Bayesian
searches. To carry out this analysis we have run our PTMCMC
and computed the Bayes factors for each case. In the first case
we allow the noise parameters and GW parameters to vary and
explicitly compute the Bayesian evidence via thermodynamic
integration for a model with a GW and noise and a model with
just noise. In the second case, we fix the noise parameters to the
maximum a posteriori obtained from single pulsar analyses and
only allow the GW parameters to vary. As mentioned above, the
second case is not reliable since there are likely to be correlations
between the GW and noise parameters; however, we give the
results of both searches for completeness. As above, in the case
of a true continuous GW signal we can get very different results
from a fixed-noise versus a varying noise search. However, in
our case the log-Bayes factor for searches with and without
varying noise parameters is —0.55 and —0.1, respectively, both
indicating that there is no evidence for a continuous GW and a
model consisting of noise is preferred. We further note that this
is completely consistent with our frequentist analysis.
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5.3. Upper Limits

In this section we will outline the procedures used to compute
both the frequentist and Bayesian upper limits on the strain
amplitude, hy. First we wish to state that an x% upper limit
on the strain amplitude does not mean that we would have
detected a signal with that amplitude with 95% confidence, it
simply means that the true value of the amplitude is less than
the upper limit with 95% probability (this probability measures
the frequency of measuring that value of the amplitude in the
frequentist case and the degree of belief in the true value of
the amplitude in the Bayesian case). In the following sections
we will discuss the mathematics of upper limit computation in
the frequentist and Bayesian frameworks, and then we will lay
out our computational procedure.

5.3.1. Frequentist Approach

From a frequentist viewpoint, the data are random while the
signal parameters are fixed but unknown (i.e., we construct
probability distributions for the data, or rather some function
of the data, given a set of signal parameters), whereas in the
Bayesian framework the data are fixed and the signal parameters
are uncertain (i.e., we construct probability distributions of the
signal parameters given a data set). From the above statement
it then follows that frequentist upper limits are derived from
integrating the probability distribution of some statistic of the
data (the F), statistic in this case) at a fixed value of the
parameter of interest, and Bayesian upper limits are derived
from integrating the probability distribution of the parameter of
interest for the given data set.

More formally, the probability distribution of the F), statistic
given a value of the strain amplitude Ay is

p(Fylho) = / p(Fplho, &, m)p(A)p(n) dA dn, (45)

where A = {0, ¢, fow, M, 1, ¥, Do} is a reduced parameter

space vector, p(L) is the sampling distribution of A (these
sampling distributions are identical to the prior probability
distributions in the Bayesian case), n is a noise time series
drawn from the distribution

(46)

1
p(n) = ——nTCIn),

1
—————eX
Wdet2n C p< 2

with C the covariance matrix of the noise in the pulsar tim-
ing residual time series, and p(F,|ho, 1. n) is the probability
distribution function for the F), statistic for given values of hg
and X and a given noise realization n. An upper limit on /g at

confidence level « is then computed as

S
Il

/ p(]:p|h0)d~7:p
fpyo

N .
iz 1 if Fp; Z Fpo
N 0 otherwise

i=1

(47)

l

where the N observables F, ; are drawn from the “signal distri-
bution,” p(F,|ho), and the average, (-), is over that distribution.
In other words, we integrate the probability distribution of the
F, statistic over the so called “signal space” (i.e., from the mea-
sured value F), o to infinity), that is, we count the number of
signal realizations that gives an F, statistic value larger than the
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one measured in the actual data set. This integral can take on
any value « € [0, 1] for a given hy; therefore, the integral must
be repeated with different values of A, until « = 0.95 for a 95%
upper limit.

In practice, we carry out the following computational proce-
dure.

1. Measure the value F), o from the real 17 pulsar NANOGrav
data set as described in Section 4.3.

2. Simulate a synthetic noise vector n = Lw for each
pulsar, where L is the Cholesky decomposition of the noise
covariance matrix C, and w is a unit variance, zero-mean,
vector.

3. Choose strain amplitude, &y and construct a GW waveform
s(t, ho, )NL) for each pulsar where the parameters X are drawn
from the distribution p(}).

4. Construct a new set of residuals for each pulsar 8¢5y, =
R(n+s(t, hy, X)), where R is the so-called fitting projection
matrix introduced in Demorest et al. (2013) and Ellis et al.
(2013).38

. Now measure the value F, ; for the simulated data set.

6. Repeat steps 2-5 10,000 times and measure the number of
realizations that result in 7, ; > F 0.

7. Repeat steps 2—-6 with different values of /g until 95% of
simulations result in F, ; > F, 0.

9]

In the remainder of the paper we will choose to compute upper
limits on the strain amplitude as a function of GW frequency
or GW sky location at a fixed GW frequency. To facilitate such
upper limits we simply fix the parameters (either GW frequency
or sky location) when simulating waveforms in step 3.

5.3.2. Bayesian Approach

As mentioned above, in the Bayesian framework we do not
rely on simulations as we treat the data as fixed and integrate
the posterior PDF of the parameter of interest to compute the
upper limit. In principle, a Bayesian upper limit is much more
simple and intuitive than a frequentist upper limit. To compute
a Bayesian upper limit we compute an integral that is analogous
to Equation (47)

h“p B B 5
/0 dho f d3.d p(Stlho. 7., $)p(ho)pGyp(@)

hup
_ f dho p(8tlho)p(ho), 48)

0

where p(§t|hy, x, ¢) is the likelihood function; and p(hy), p(X),
p(¢) are the prior probability distributions on Ay, ):, and ¢, re-
spectively, where ¢ denotes the noise model parameters. In
words, we simply integrate the marginalized posterior distribu-
tion of Ay until the desired credible region corresponding to a
probability of o is reached at A = hyp. As in the frequentist
case, we want upper limits on the strain amplitude as a function
of GW frequency or sky location. In this case we simply fix the
parameters and then marginalize over the others. In practice,
to compute the Bayesian upper limits we carry out a separate
MCMC run for fixed values of frequency and/or fixed sky loca-
tions and then compute the 95% upper limit for each. The choice

38 We choose to create residuals with the R matrix rather than re-fitting the
timing model with TEMPO2 in order to simulate many data sets quickly. We
have done many tests to make sure that we get the same results using both the
R matrix and using a full TEMPO2 run.
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Figure 5. Sky-averaged upper limit on the strain amplitude A as a function
of GW frequency. The Bayesian upper limits are computed using a fixed-noise
model (thick black (blue)) and a varying noise model (thin black (purple)) and
the frequentist upper limit (gray (red)) is computed using the ), statistic. The
dashed curves indicate lines of constant chirp mass for a source with a distance
to the Virgo cluster of 16.5 Mpc and chirp mass of 10° M, (lower) and 10'° M,
(upper). The gray (green) squares show the strain amplitude of the loudest GW
sources in 1000 Monte Carlo realizations using an optimistic phenomenological
model of Sesana (2013). See text for more details.

(A color version of this figure is available in the online journal.)

of prior on Ay is very important and can lead to very different
upper limits. Such a detailed analysis of priors is beyond the
scope of this work but will be addressed in a future paper. In
principle, our prior distribution should come from population
synthesis models (Sesana 2013); however, since we wish our
upper limits to be informed by our data and not dominated by
our prior distribution we use a very conservative®” prior that is
uniform in o with kg € [0, 107117,

5.3.3. Sky-averaged Strain Upper Limits

In Figure 5 we report the 95% upper limits on the strain
amplitude, Ay, as a function of GW frequency computed using
the methods described above for the frequentist and Bayesian
pipelines. The gray (red), thick black (blue), and thin black
(purple) curves are the 95% upper limits on strain amplitude
computed using the F, statistic, Bayesian method with fixed-
noise values, and Bayesian method with varying noise values,
respectively. There are several features in the plot that require
explanation. First, the decrease in sensitivity at foy = 1 yr!
and fo, = 2 yr~! is due to the sky position and parallax
fitting in the timing model, respectively. The upward trend at
lower frequencies is due to the quadratic spin-down model fit.
The noisiness of the frequentist upper limit is due to the fact
that the F), statistic distribution at higher frequencies is indeed
quite noisy when computed using the real data, and since our
upper limits compare the value measured in real data to values
measured in simulated data, this noisiness is to be expected.

If we compare our results to those of Yardley et al. (2010),
we see that the upper limits using the five-year NANOGrav data
sets are a factor of two to three times more constraining. The
main reason for this improvement is the higher timing precision
of the NANOGrav data set as compared to the older PPTA
data sets (Verbiest et al. 2009). Although the procedures for
setting frequentist and Bayesian upper limits are quite different,

39 On a logarithmic scale this prior prefers higher strain values a priori;
however, it is conservative in the sense that the corresponding upper limit will
not overestimate our sensitivity and the limit will not depend on the lower
bound of the prior as is the case for logarithmic priors.
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our results are very similar. In part, this is due to the fact
that we have used a uniform prior on the strain amplitude, &y,
making our Bayesian analysis very similar to a pure likelihood
analysis. Since the F, statistic is just the likelihood (ratio)
maximized over amplitudes, we would expect a likelihood
analysis to give similar results. Note that the Bayesian upper
limits when varying the noise parameters are somewhat less
constraining than the fixed-noise case. This is to be expected
since at lower frequencies the GW amplitude and red noise
amplitude are somewhat correlated and at higher frequencies
the GW amplitude and jitter parameter are somewhat correlated.
Both correlations will result in slightly worse upper limits on
the GW amplitude when allowing the noise parameters to vary.

In Figure 5, the dashed curves indicate lines of constant
chirp mass for a source with a distance to the Virgo cluster
of 16.5 Mpc and chirp mass of 10° and 10'°, respectively, and
the gray (green) squares are the strain amplitude of the loudest
GW events in 1000 Monte Carlo realizations using an optimistic
phenomenological model of Sesana (2013). The model used
here produces a stochastic GW background with dimensionless
strain amplitude of ~2 x 10713, just below the current upper
limits presented in Shannon et al. (2013). Astrophysically,
these upper limits tell us that we can essentially rule out any
source with M > 10'° M, at the distance to the Virgo cluster
(16.5 Mpc); however, our horizon distance falls just short of
the Virgo cluster for sources with M < 10° M. This limit
is not particularly constraining for the Virgo cluster, which
generally does not contain galaxies with such large implied
masses; however, it is interesting to assess this limit against
other nearby massive galaxies (see, Lommen & Backer 2001).
Moreover, at our most sensitive frequency of ~10 nHz, we
can convert our upper limit on the GW strain to a lower limit
on the luminosity distance of d; < 425 Mpc for sources with
M = 10" M.

Finally, we see that all sources from Monte Carlo realizations
(gray (green) squares) have strain amplitudes below our upper
limits indicating that it is very unlikely that we will see a
resolvable source at the current sensitivity (consistent with
our search results). It is important to note, however, that these
strain amplitude upper limits are averaged over sky location and
inclination angle (either through marginalization in the Bayesian
case, or from Monte Carlo sampling in the frequentist case),
both of which play a large part in the overall amplitude of the
signal. Therefore, these results have the caveat that they make
statements about the average sensitivity to such GW sources;
however, it is still unlikely (i.e., probability of detection <50%)
that we could detect even the loudest optimally oriented source
shown in Figure 5. For face-on systems (i.e., ¢t = 7/2) and
sky location near the best timed pulsars, the overall amplitude
of the GW can be ~five times larger than the averaged strain
amplitudes reported here.

5.3.4. Angular Upper Limits

In Figures 6 and 7 we report the 95% lower limit on the
luminosity distance as a function of sky location computed using
the frequentist and Bayesian techniques, respectively. We have
chosen to present our results in terms of the luminosity distance
instead of the strain amplitude as it is a true physical parameter
and it gives a more intuitive feel as to what the data can constrain.
To compute this lower limit we carry out the same procedure as
above but we fix the frequency to fw = 1078 Hzand compute an
upper limit on the strain amplitude as a function of sky location;
we can then use Equation (17) to convert an upper limit on
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Figure 6. 95% lower limit on the luminosity distance as a function of sky
location computed using the 7, statistic plotted in equatorial coordinates. The
values in the colorbar are calculated assuming a chirp mass of M = 10° M, and
a GW frequency fow =1 x 108 Hz. The white diamonds denote the locations
of the pulsars in the sky and the black (white) stars denote possible SMBHBs
or clusters possibly containing SMBHBs. As expected from the antenna pattern
functions of the pulsars, we are most sensitive to GWs from sky locations near
the pulsars. The luminosity distances to the potential sources are 92.3, 1575.5,
2161.7, 16.5, 104.5, and 19 Mpc for 3C 66B, OJ 287, J002444—003221, Virgo
Cluster, Coma Cluster, and Fornax Cluster, respectively.

(A color version of this figure is available in the online journal.)

strain amplitude into a lower limit on luminosity distance. The
values in the color bar are calculated assuming a chirp mass
of M = 10° M, and a frequency of fyy = 1078 Hz but this
can be scaled to determine the minimum luminosity distance for
any chirp mass value and GW frequency. In Figures 6 and 7 the
white diamonds represent the locations of the 17 NANOGrav
pulsars used in the analysis and the black (white) stars are the
sky locations of potential GW hotspots (Simon et al. 2014) and
possible GW source candidates (Valtonen et al. 2008; Iguchi
et al. 2010; Ju et al. 2013).

We will now discuss the features of this sky-dependent upper
limit computed using the frequentist F), statistic. Firstly, we
notice that the overall distribution is quite similar to the antenna
pattern response (i.e., 1 + cos i) as is to be expected in the case
of no detection. Due to this, we are most sensitive (larger lower
limit on luminosity distance) at sky locations near the best timed
pulsars (i.e., J1713+0747, B1855+09, J1909—3744) and least
sensitive in the opposite direction. More quantitatively, we note
that in the most sensitive areas of the sky we can constrain
the luminosity distance d; > 47Mpc for M = 10° M.
Furthermore, it is possible to constrain the luminosity distance
d;, Z ~2 Gpc in the most sensitive sky locations if we consider
10'% M, chirp mass sources. It should be noted that the Bayesian
fixed-noise search gives nearly identical results to the fixed-
noise frequentist search.

We now move to the sky-dependent upper limit computed
using the full Bayesian technique where the GW and noise
parameters are varied simultaneously. The first observation that
we make is that the overall scale is about a factor of two
lower than the fixed-noise frequentist or Bayesian upper limit.
At first this may be surprising given the general agreement
of the sky-averaged upper limits of Figure 5; however, full
Bayesian sky-dependent upper limits exacerbate the problem of
relatively few pulsars contributing to the overall PTA sensitivity
as shown in Figure 2. Another difference in this upper limit,
as opposed to the frequentist upper limit, is that it does not
quite match the expected antenna pattern response function.
These differences are due to the fact that we are simultaneously
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Figure 7. 95% lower limit on the luminosity distance as a function of sky
location computed using the Bayesian method including the noise model. The
values in the colorbar are calculated assuming a chirp mass of M = 10° Mg,
and a GW frequency fow = 1 X 10~8 Hz. The white diamonds denote the
locations of the pulsars in the sky and the black (white) stars denote possible
SMBHBs or clusters possibly containing SMBHBs.

(A color version of this figure is available in the online journal.)

varying the GW and noise parameters, and when only one
or a few pulsars contribute to the PTA sensitivity, there is a
degeneracy between intrinsic red-noise processes in the pulsar
and a common GW among all pulsars. In other words, it is very
difficult to distinguish between a low-frequency continuous GW
and a red noise process if only a small number of pulsars have
sufficiently low noise levels to resolve the GW.

Because Bayesian upper limits marginalize or integrate over
all parameters except the amplitude, the correlations between
the GW and the red noise amplitude will broaden the 1D PDF
of the amplitude and thus will result in larger upper limits as
opposed to the fixed-noise case. As is clear from Figure 7, the
aforementioned effect is very strong for GW sky locations near
our best timed pulsars. For example, we are not most sensitive to
GWs around the sky location of PSR J1713 + 0747 because this
pulsar contributes a very large percentage of the overall S/N of
the GW in this case and thus results in a very large correlation
between the GW and red noise amplitudes.

Since, at the moment, we have no way of measuring the noise
properties of the pulsars independently of any GWs that may be
present in the data, to perform a completely robust upper limit
or search we must allow both to vary simultaneously. Given this
reality, we must view any fixed-noise results with the caveat that
they assume that the noise parameters are measured perfectly
and are independent of any GWs in the data.

Unfortunately, many of the GW hotspots and potential
SMBHB sources are located at insensitive sky locations, for
both frequentist and Bayesian analyses, where our lower limit
on distance only allows us to constrain 10'® M sources. This
fact is a great argument for aggressive pulsar search campaigns
and the addition of new pulsars to the PTA at sky locations that
are currently insensitive (Burt et al. 2011).

5.3.5. Constraints on the SMBHB Coalescence Rate

A non-detection of continuous GW, as we have presented
here, allows us to compute an upper limit on the rate of
SMBH coalescences using methods presented in Wen et al.
(2011). Since we have made no detections, we assume Poisson
statistics for the probability of an event (i.e., a detectable signal)
occurring, that is, the probability of no events is e~ ™, where
(N) is the expected number of events. We use this probability
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distribution function to place a 95% upper limit on the expected
number of events such that exp(—Nys) = 0.05, telling us that
(N) < (Ngs) = 3. Therefore, if the expected number of events
were greater than 3, at least one source would have been detected
with 95% probability. Now, following Wen et al. (2011), the

expected number of events is
d’R df\~
dt

(N} = /dloglo(l +2)d logo(M,)
X Pg(M,, z, f)dlog,o(1 +z)dlog,,(M,) df,
(49)

where P;(M,, z, f) is the probability of detecting an SMBHB
with chirp mass M = M,(1 + z), redshift z, and observed
GW frequency f. Following the derivation in Wen et al. (2011)
and making the assumption that the differential coalescence rate
does not vary significantly over the range Alog;, M, = 1 and
Alogy(1 +z) = 0.2, it is possible to show that

d’R
<
dlogy(1 +z)d log,o(M;)

15

J (DY PaM,, 2, frdf
(50
In order to compute the detection probability P;, we make
use of the F, statistic. We use the same method that we have
used for the upper limits, except now we compare the value of
F, computed using simulated data with injections to a specified
threshold based on an FAP of 10~*. We use 10,000 realizations
at each value of z and f. After the probability of detection is
computed, we numerically integrate the above expression to
obtain a limit on the differential coalescence rate. It should be
noted that we will be able to place more meaningful constraints
on the coalescence rate using upper limits on the amplitude of a
stochastic background of SMBHBs; however, this is beyond
the scope of this work and will be addressed in a future
paper. In Figure 8 we plot our constraints on the differential
coalescence rate as a function of redshift. Since we have made
the assumption that this differential coalescence rate does not
vary significantly over an order of magnitude in chirp mass, the
results presented here are for the M, = 10'° M, case. We are
unable to place meaningful constraints on less massive systems.
The light gray (red) shaded area is constructed using the model
presented in Jaffe & Backer (2003) along with measurements
from the Sloan Digital Sky Survey (Wen et al. 2009). The
medium gray (blue) shaded area is constructed by considering
the different galaxy merger rates based on observations (Sesana
2013) along with the most recent MBH—sigma relation from
McConnell & Ma (2013). The dashed line comes from an
a posteriori implementation of the McConnell & Ma (2013)
MBH-sigma relation into the semi-analytic model of Guo et al.
(2011) assuming accretion onto both SMBHs before merger.
The black (green) shaded region is constructed by using the
observed evolution of the galaxy mass function combined with
the MBH-M-stars relation from McConnell & Ma (2013) to
calibrate an analytical model for evolving the mass function via
mergers (McWilliams et al. 2012). The figure shows that the
coalescence rate for MBHs of ~10'° My, is poorly constrained.
This is mostly because of the steepness of the galaxy mass
function at such high masses: a small change in the slope results
in a large variation in the sparse population of 10'° M black
holes. The intrinsic scattering (e.g., Gultekin et al. 2009) and
poor knowledge of the behavior of the MBH—galaxy relations
at the high mass end (e.g., Lauer et al. 2007) add further
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Figure 8. Differential coalescence rate of SMBHBs per redshift per chirp mass
with mass bin centered on 10' Mg and width 1 dex. We have chosen to explore
only the highest masses since these high mass sources are the ones likely to be
detected by GW searches in the future. The black triangles represent our upper
95% upper limits, the light gray (red) shaded area show expected coalescence
rate estimates obtained from Jaffe & Backer (2003) as well as data from the
Sloan Digital Sky Survey (Wen et al. 2009). The medium gray (blue) shaded
region comes from the phenomenological models of Sesana (2013) and the
black dashed line comes from an a posteriori implementation of the McConnell
& Ma (2013) MBH-sigma relation into the semi-analytic model of Guo et al.
(2011). The black (green) shaded region is constructed by using the observed
evolution of the galaxy mass function combined with the MBH-M-stars relation
from McConnell & Ma (2013) to calibrate an analytical model for evolving the
mass function via mergers (McWilliams et al. 2012).

(A color version of this figure is available in the online journal.)

uncertainties, making the coalescence rate estimate problematic.
As s clear from the figure, we are unable to place any constraints
on the physical models mentioned above; however, as our
GW sensitivity improves with time, we will begin to place
meaningful constraints on physical models pertaining to the
coalescence rate of SMBHBs.

6. DISCUSSION
6.1. Future Improvements

Predicting the future sensitivity of PTAs to continuous GWs
is quite difficult and depends on a number of poorly constrained
factors that make up the entire noise budget for each pulsar
(Cordes & Shannon 2010). A detailed study of these effects on
the future performance of a PTAs sensitivity to continuous GWs
is beyond the scope of this work. Here we simply derive a rough
scaling law for the S/N of a continuous GW measured by a PTA
and make a few statements about expected future performance.
The square of the S/N is defined to be*”

5 ()P
ZWM—ZR/ AT

where 5, (f) is the Fourier transform of the GW induced timing
residuals and S} (f) is the power spectral density of the noise
for the «rth pulsar. As we mentioned above, the frequency of the
GW will not vary over the observation time and the waveform
is approximated by a sine wave at a single frequency. We will
further assume that the pulsar term is at the same frequency for

(51

40 We ignore timing model fitting here and make use of the Fourier domain for
ease of computation.
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this scaling law computation. The S/N then becomes

- © AP — [
o ) ke /_mdf SEI) + 02 ca

a2

~ N2 E o
~ A(f) Z 2 SR+ oRles” (52)

where §(f — f’) is the Dirac delta function, A(f’) is the pulsar
independent amplitude of the GW, a, is a geometric factor that
depends on the antenna pattern functions for each pulsar, ¢,
is the observing cadence for each pulsar, and S™( ") and o,
are the red noise power spectral density at f = f’ and white
noise rms, respectively. Our sensitivity to continuous GWs is
proportional to the S/N, thus this expression for the S/N can
serve as a proxy for how our upper limits and sensitivity will
improve with various quantities. It is interesting to examine this
scaling law in the white noise and red noise dominated regime

T a2 1/2
ayCa
Puite ¢ (Z p ) (53)
1/2
T,a2
pdoc(zsd—(f)> : (54)

The above scaling laws tell us that many pulsars distributed
across the sky with high timing precision, high observing
cadences, and low red noise levels observed over a long baseline
will result in the best possible sensitivity to continuous GWs.
New pulsar timing backends at Arecibo and the GBT (DuPlain
et al. 2008) give roughly a factor of two higher timing precision
for many pulsars, which will translate into an expected upper
limit on the amplitude of continuous GWs that is a factor
of two more constraining. As we acquire more data on our
currently timed and newly discovered pulsars we will gain
more sensitivity and will be able to probe to lower frequencies.
Access to IPTA data would essentially serve to increase the
observing cadence, and thus our sensitivity, since we would
have complementary data from many different observatories
measured at different times. Furthermore, current pulsar search
campaigns (Lynch & Green Bank North Celestial Cap Survey
Collaborations 2013) are discovering new MSPs in our least
sensitive sky locations (see Figures 6 and 7), which will
dramatically increase our overall sky coverage and will allow
for better distinction between GW and noise models. Finally,
advanced detectors, such as the Square Kilometer Array (SKA;
Lazio 2013) are expected to time tens of pulsars at or below
the 100 nanosecond level, which will likely solve many of the
current problems that we face with poor angular sensitivity and
inability to distinguish between single GW source and intrinsic
pulsar noise.

In the red noise dominated regime, the cadence of obser-
vations and the overall white noise level is negligible and we
essentially only gain sensitivity through the addition of new
pulsars and continued timing. Here we note again that there is
very little evidence for red noise in the five-year NANOGrav
data set but this may change in the future as we become more
sensitive to the stochastic GW background which would induce
a common red noise signal in all pulsars. Of course, red noise
from a stochastic background of GWs or from intrinsic pulsar
spin noise (Shannon & Cordes 2010) is likely to have a steep
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spectrum and this red-noise dominated regime would only apply
at the lowest frequencies.

For many pulsars in the five-year data set we are in the white
noise dominated regime and since the S/N consists of the sum
of the inverses of the white noise rms values, we see that only the
best timed pulsars will contribute (as we have seen throughout
this paper) and one may argue that we should focus all observing
time on the best pulsars. However, as was shown in Siemens
et al. (2013), our sensitivity to the stochastic background has
a significantly weaker dependence on observing cadence and
white noise rms but has a linear dependence on the number of
pulsars in the array. Thus, it is difficult to realistically optimize
a PTA for both continuous and stochastic GW sources.

6.2. Summary

In this paper we have performed various searches for contin-
uous GWs from non-spinning SMBHBsS in circular orbits using
both frequentist and Bayesian techniques. Specifically, we have
run a fixed-noise frequentist and Bayesian pipeline, as well as
a varying noise Bayesian pipeline. In the absence of any de-
tections we have placed upper limits on the strain amplitude of
continuous GWs as a function of GW frequency. We have also
computed a lower limit on the distance to such SMBHBs as a
function of sky location, as well as placing constraints on the dif-
ferential coalescence rate of such SMBHBs. Our sky-averaged
upper limits on strain amplitude as a function of frequency
are a factor of ~three times more constraining than the previ-
ously published upper limits (Yardley et al. 2010) and we see
good agreement between all three data analysis methods. Al-
though improving, our limits still lie well above the amplitudes
of individual sources produced from several realizations of an
optimistic SMBHB population. We have shown that with good
estimates of the intrinsic noise we can rule out any sources with
luminosity distance <425 Mpc and a chirp mass of ~10'0 M.
Furthermore, this limit becomes about a factor of four more
constraining for GW sources that are near our most precisely
timed pulsars in the sky. Unfortunately we are not yet able to
place any constraints on predictions for the coalescence rate of
SMBHBs obtained from both theory and observations.

Throughout the paper we have made several statements about
what is needed for completely robust data analysis techniques
and what will be required from future PTAs in order to secure a
confident detection of a continuous GW. These statements can
be summarized as follows.

1. Currently we have no way to confidently separate intrinsic
noise in the residuals from any GW that may be present.
Therefore, it is necessary to include both noise and GW
parameters in any data analysis pipeline that aims to be
truly robust. This is not to say that fixed-noise methods
should not be used; instead we advocate a hierarchical
approach where the faster fixed-noise methods are used as
a first pass and then followed up with a full GW plus noise
search. Lastly, a signal with more information, such as that
from an eccentric system, could help break this degeneracy
between signal and noise models and will be the subject of a
future paper.

2. Even with simultaneous noise and GW characterization,
unless we have several well-timed pulsars (with very
similar timing precision on all) with decent sky coverage,
a confident detection of a continuous GW is unlikely even
if the signal is loud.
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In summary, we note that while not as likely as a detection
of a stochastic GW background, with continually improving
timing precision, the addition of new pulsars to PTAs, and
improved data analysis techniques, prospects are good for
obtaining astrophysically constraining GW limits, or possibly
even a detection of a continuous GW, over the next decade.
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APPENDIX A
GRAVITATIONAL WAVE FREQUENCY EVOLUTION

Since GWs will radiate power away from a SMBHB source,
to compensate for this loss of energy the orbital separation must
decrease with time. Equivalently, though Kepler’s third law; GW
radiation will cause the orbital frequency to increase with time.
By setting the power radiated in GWs equal to the change of
orbital energy due to increasing orbital frequency, —d E it /dt,
we obtain

96
o = ?M5/3w1]/3’ (Al)

where M = (m1m,)*° /(m1 +m,)'/ is the chirp mass and w is

the orbital frequency of the binary system (note wgy = 2w). We
can now use this expression to analytically solve for the orbital
frequency as a function of time

t 3 (1)
[ar= S |
Iy 96 w(t=ty)

5 _
t—tg= — M (a)o 83 _ a)(t)_g/S)

256
256 —3/8
- o(t) = wp (1 - ?M”wg“(t - to)) ., (A2)

dow "3

where t; is the time at which the first measurement was made
on Earth and wy = w(t = ty) is the initial orbital frequency. For
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a circular orbit, we define the phase to be
do
= ow. A3
prii (A3)

We can solve this equation similarly

@) ¢
/ d0 — /
D(t=ty) 1=ty

w(t)
D(t) — Py = / do —
w(t=ty) w

5 w(t)
=M -5/3 /
96 w(t=ty)

<w(;5/3 — w(z)*5/3) (A4

dt' w(t)

dow 8?3

1
D) =D + EIYEE
where, again, ®y = O(r = 7).

Equations (A2) and (A4) are true in general and can be applied
when the frequency evolves appreciably over the total observing
time. However, it is very useful to work under the assumption of
slowly evolving binaries where Tepip >> T', with T the observing
time and

[20)]
Tchirp =

-5/3 —8/3
=32x10°yr M o /.
108 Mg, 1 x 10-8Hz

(A5)

Since typical PTA observations are on the order of 10-20 yr and
T/ Tehirp ~ 104, this is a safe assumption for a broad range
of masses and initial orbital frequencies of interest. With this
approximation we can write the orbital frequency and phase for
the Earth term simply as

D, (1) = Dy + wo(t — 19)

we(1) = wy.

(AO6)
(AT)

However, for the pulsar term we are “seeing” the phase and
frequency at aretarded time f,, = ¢ — L(1 —cos u), where Lis the
pulsar distance and u is the angle between the GW and the pulsar
on the sky. Because pulsar distances are on the order of a few
kiloparsecs, this means that the total time baseline is on the order
of thousands of years and we would expect frequency evolution
over those timescales. However, just because the pulsar “sees”
a different frequency than the Earth, this does not mean that the
frequency at the pulsar changes over the observation time. For
this reason we can write the phase and frequency at the pulsar
in a similar manner

D,(t) =Dpo+wpt (A8)

(A9)

We can determine the “pulsar-term frequency” by evaluating
Equation (A2) and setting t = ¢,

wpy(t) = w,.

256 e
a)p(t) = o (1 — ?M5/3w§/3(tp - tO))

8 wo 8 wo —3/%
wo|1+=-—L({ —cosp)+=-—( —ty)
3wy 3 wo

8 o —3/8
wo <1+——L(1 —cosu)) =w,  (Al0)
3 w

R
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In the above, we can safely ignore the last term in the second
line with the reasoning that the frequency does not evolve over
the observation time. Notice that the pulsar term frequency is
always less than the Earth term frequency as we are observing
the dynamics of the SMBHB in the past when the orbital
separation was larger. Determining the pulsar-term phase in
this approximation is a bit trickier. Re-writing Equation (A4),
we get

D(t,) t,
/ do = / dt’' w(t)
q)(tp,(J) [p,()

DQ,(t) — P, 0= wp(t — L(1 —cosu)) +w,L(1 — cos u)
SDL(1) =Dy 0 + wpt, (A1D)

where we have used the fact that w(f) = w, in the region of
integration and we have adopted a notation in which ®,(¢) =
®(t,,). To determine the initial phase at t = —L(1 — cos 1) we
use Equation (A4) to obtain

D, 0=D(t =—L(1 —cos )

-5/3

=Q oN w75/3)

. (A12)

1
MEVYYEE (
Although the above expressions for @, () and @ ,(¢) are approx-
imations, they hold true for nearly all values of M and w that
we would expect in nature.

APPENDIX B
ALTERNATIVE F, STATISTIC DERIVATION

The F, statistic was introduced in Ellis et al. (2012) as a
continuous GW detection statistic. However, when applied to
single pulsars (as opposed to the full PTA) it essentially acts
as a noise-weighted periodogram. While a specific notation was
introduced in the original work we will use a consistent notation
here to avoid confusion. In the same manner as above, let the
pulsar timing residuals be denoted as

8t = MSE +n+ Fa, (B1)
where now n encapsulates all noise in the data (parameterized
by some parameters ¢) and Fa is the Fourier decomposition of
a single GW source and not the non-white noise components.
Here we will assume a flat prior for the Fourier coefficients a.
We now write the log of the marginalized likelihood ratio

InA = In p(8t|a, ¢) — In p(5t|P)

~ 1 ~
=68t"C'Fa— EaTFTC’lFa, (B2)
where, in a similar manner as above, c!= G(GTcG) 'GT
and C is the covariance matrix of the noise in the residuals.
Finding the maximum likelihood values of a and plugging
it into the likelihood ratio we arrive at the F, statistic for a
single pulsar:
1 ~ ~ ~

F,= EStTC"F(FTC‘IF)‘IFTC_I&. (B3)
Note that we are projecting the noise-weighted residuals onto
a Fourier basis and then taking the square. Essentially this is

a noise-weighted power spectrum and is identical to previous
expressions for the F), statistic.
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APPENDIX C
MCMC IMPLEMENTATION DETAILS

Here we will go over the specific implementation of the
PTMCMC algorithm. The algorithm is based on that presented
in E13 but has been slightly modified to be more efficient and
robust. Specifically we will detail the jump proposals used in
this work and the setup of the parallel tempering chains and
thermodynamic integration calculation.

C.1. Jump Proposals

In order to facilitate good mixing of the MCMC chains,
especially in large parameter spaces, it is very important to have
good jump proposals. In our implementation of the PTMCMC
algorithm we use a jump proposal that is composed of a
randomized cycle of sub-proposals. Here we will briefly outline
the different jump proposals used in the cycle.

C.1.1. Correlated Jumps

As described in E13, we use an Adaptive Metropolis (AM)
scheme to make correlated jump proposals. In essence, this
jump uses the previous points in the chain’s history to construct
a sample covariance matrix, C, (Haario et al. 2001), which
is then updated throughout the run. In practice we update
this covariance matrix every 1000 iterations. Primarily the
sample covariance matrix is multiplied by a scale parameter
Sq¢ = 2.4%/ngim, which gives an optimal 25% acceptance rate
in the case of Gaussian posterior distributions; however, we
will occasionally make small jumps (scale by 0.01) or large
jumps (scale by 10). This jump is used in ~20% of our total
jump cycle.

In large parameter spaces, such as those we encounter when
modeling the GW and noise simultaneously, the above method
can result in very low acceptance and thus, slow convergence.
Haario et al. (2005) introduce the Single Componentwise
Adaptive Metropolis (SCAM) algorithm in which only one
uncorrelated variable is updated in the jump proposal. If the
variables are completely uncorrelated, then this method is
identical to using the AM algorithm but only updating one
parameter. However, if the parameters are correlated, as they are
in our problem, we can define a set of uncorrelated parameters

y=U"x, (C1)
where x is our original vector of parameters and U is defined
by the eigenvalue decomposition C,, = USUT, where U is a
unitary matrix and S is a diagonal matrix. It is then easy to see
that the covariance matrix of y, averaged over many steps in the
chain, is
wh=U"xx"yU=U"Uusu'v =s. (C2)
Since S = diag{o?} is a diagonal matrix, each y represents an
uncorrelated parameter. Therefore, we choose an uncorrelated
parameter at random and propose the jump
yi, =y +24N(0,07), (C3)
where N(0, oy) is a zero mean Gaussian deviate with variance
032, i is the iteration number, and j is the parameter number. We
can then relate the jump in the uncorrelated parameters back to
a jump in the correlated parameters

Xis1 = Uyisr. (C4)
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If U is not the identity matrix (i.e., the parameters, x, are
correlated) then this means that we will jump in combinations
of correlated physical parameters even though we only jump
in one uncorrelated component at a time. We have found that
jumps of this kind greatly improve mixing when running with
a large number of search parameters (e.g., >100). This jump is
used in ~40% of our total jump cycle.

We also employ a third type of correlated jump proposal
known as differential evolution (DE; Braak 2006). Differential
evolution is a simple genetic algorithm that also makes use of the
previous history of samples in the chain. A differential evolution
jump can be constructed as follows. First choose, at random, two
previous iterations of the chain. Denote the parameter vector at
those two new points as x,, and x,,. The DE jump is then

(C5)

Xis1 = X +SpE(Xy — Xp),

where spr is a scale factor which we choose to be spg =
2.42 /ngim and spg = 1, each with 50% probability. The first
scale factor here is identical to that used in the AM jumps and
the second is known as a “mode jump,” that is, if x,, and x,
are located at two different modes of the posterior distribution,
then the mode jump will result in a jump that stays on the
same mode as x; or jumps to the other mode. For this reason,
DE jumps are usually employed if there are strong multimodal
structures in the posterior PDF, which we may expect in the case
of a weak continuous GW. Also, since we are drawing points
from the posterior, then these jumps will also “learn” about any
correlations among parameters and will be taken into account
in the jump proposal. This jump is used in ~20% of our total
jump cycle.

Finally, we use a special jump proposal for the chirp mass
and luminosity distance. This jump makes use of the fact that
there is likely to be a large correlation between chirp mass
and luminosity distance for nearly non-evolving sources. If
the frequency evolution is negligible then the waveform only
has information about the combination M>/3/d;, with a very
weak mass dependence in the frequency derivative term. For
this jump, we draw a random luminosity distance value from
the prior and then resolve for what value of chirp mass will keep
the combination M>/3 /d; constant. This jump is used in ~5%
of our total jump cycle.

C.1.2. Uncorrelated Jumps

Although we use mostly correlated jump proposals, about
15% of our jumps consist of uncorrelated jumps. In many
cases, these uncorrelated jump proposals are simple draws from
the prior distribution. For prior draws, we have four different
jump proposals. Since all pulsars will have a strong white noise
component but a weak red noise component and likely no visible
GW signal, we draw from the white noise, red noise, and GW
prior distributions separately with different weights. Red noise
and GW (including the pulsar distance) prior draws account for
~12% of our total jump cycle. Finally, we also occasionally
make white noise and full parameter space prior draws, which
account for ~3% of our total jump cycle. Although this is
quite a large percentage of jumps that draw from the prior, it
greatly improves mixing in our case when we have many search
parameters with broad posterior distributions. It should also be
noted that when doing injections, we reduce the amount of prior
draws to about ~5% of the total jump cycle.
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C.1.3. Auxiliary Pulsar Mode Jump

In E13, we discussed the difficulty posed by including the
pulsar distance as a search parameter, showing that a very small
change to the pulsar distance (<1 pc) can result in a phase shift
in the GW waveform of order 2. In that work we sidestepped
this problem by breaking the pulsar term into a “phase” term and
an “evolution” term. The phase term corresponds to very small
jumps in the pulsar distance that will change the constant phase
of the pulsar term, whereas the evolution term corresponds to
large jumps in the pulsar distance that will change the frequency
evolution. We used separate parameters to jump in the phase and
evolution. More explicitly, we introduce a pulsar-term phase for
each pulsar that is used in the phase term and also include the
pulsar distance that is only used in the evolution term. While this
method allows for good mixing and acceptance rates, it adds an
extra Ny, parameters to the search.

Here we will describe a new method that does not require any
additional parameters. This jump technique is summarized as
follows.

1. Perform initial jump (either correlated or uncorrelated as
described above).

2. Construct pulsar-term phase of Equation (A12) using
the new parameters. This phase is likely several radians
from the pre-jump pulsar-term phase due to the pulsar
distance jump.

3. We desire a small Gaussian jump in the pulsar initial phase.
To accomplish this we will slightly modify the pulsar
distance such that

D, (L' +8L) = D), + 8¢, (C6)
where the 1 and O superscripts denote post and pre-jump
values, respectively, §L is a small pulsar distance offset,
and 8¢ is a small Gaussian phase jump. We can re-write the
above expression

(Dp,O

D, + SL = +89, (CT7)

d L=L!

where @) , = @, o(L') and we have simply used a Taylor
expansion. Making use of Equation (A12) we solve for § L

(D;,o — (I)(;)’0 + 8¢

L= ——"——.
wp(1 —cos ')

(C8)

4. Now let Lyew = L' +68L.

Essentially what we have done is to turn a pulsar distance
jump into a pulsar-term phase jump. So in essence we are not
breaking detailed balance as we are simply using the pulsar
distance as an auxiliary parameter and initial pulsar-term phase
as the actual search parameter. This auxiliary jump is called
after every jump proposal in the cycle to ensure reasonable
acceptance rates.

C.2. Parallel Tempering and Evidence Evaluation

Here we will describe our parallel tempering and thermo-
dynamic integration techniques used to calculate the Bayesian
evidence. We want our algorithm to then quickly locate the
global maxima in the parameter space. To accomplish this in
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Figure 9. Mean log-likelihood vs. 8 for GW plus noise (gray (blue)) and noise (black (green)) models. Here we see that we have indeed explored a sufficient range of

temperatures based on the fact that both curves become constant at small 8.
(A color version of this figure is available in the online journal.)

a way that satisfies detailed balance we make use of paral-
lel tempering. This technique involves different chains explor-
ing the parameter space simultaneously, each with a different
target distribution

p(©ld, B) = p(©)p(d|©),

where B < 1 is the inverse “temperature” and © parameter-
izes the model. This will essentially flatten out the likelihood
surface allowing the chains to more freely explore the entire
prior volume. The “hot” chains will inform the “colder” chains
and vice versa by proposing parameter swaps between different
temperatures. A parameter swap between the ith and jth tem-
perature is accepted with probability « = min(1, H), where the
multi-temperature Hastings ratio is

_ p(d1®;, Bj)p(d1®;, Bi)
p(d|©;, B)pd|©;, B;)

By swapping parameter states between different temperatures
this ensures rapid location of the global maxima. In practice, we
perform swaps only between adjacent temperature chains every
1000 iterations. The true posterior samples will come from the
B = 1 chain but the higher temperature chains can be used to
evaluate the evidence via thermodynamic integration (see, e.g.,
Littenberg & Cornish 2009 and references therein). Consider the
evidence for a chain with temperature 1/ as part of a partition
function

(C9)

(C10)

i—>j

Z(p)

/ d0 p(d|®. H, B)p(OH)

(C11)

/ de p(d|®, )’ p(©IH).

Since the prior is independent of 8, we can take the log and
integrate over g to obtain

1

In p(d|H) =/ dp (In p(d|©, H))s, (C12)
0

where (In p(d|©, H))g is the expectation value of the likelihood

for the chain with temperature 1/8. The expectation values are

calculated over the post burn-in chains.
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In practice, it is important to choose a temperature ladder
such that we explore the entire likelihood surface and recover
the full integrand of Equation (C12). Here we will closely
follow Littenberg & Cornish (2010) in the construction of our
temperature ladder and diagnostic techniques. In constructing a
temperature ladder to be used with thermodynamic integration
it is important to understand that there are two regimes that
we are interested in (at least in the GW detection problem). The
first regime is the range of temperatures in which the (tempered)
likelihood is still in “contact” with the GW, that is, the data still
inform on the GW parameters. Since this is where the bulk of
the integrand is concentrated when a signal is present, it is very
important that we choose a fine temperature spacing here to
resolve the point at which the likelihood loses contact with the
GW. To do this we choose a geometrically spaced temperature
ladder with temperature spacing

2
AT =1+ | —,
Ndim

where ng;, is the number of dimensions in our search. Now that
a temperature spacing is defined we must choose a maximum
temperature Ty,.x for this regime. This choice is based on
the expected maximum S/N of a GW signal in the data. Since
o o /In p(8t|A, @), the effective S/N for a chain at temperature
T is per X p/ VT, therefore, for a chosen maximum S/N
we have

(C13)

P 2
'max

Thax = (—> ,
Peff, max

where pefr.max 1S the S/N at which we lose contact with the GW
signal. For this work we have chosen pp,x = 10 and pefr max = 3,
corresponding to Tp,x = 11.1. These values were chosen based
on the fact that if we indeed have a signal with p =~ 10, it would
have likely been detected in previous PTA data sets, and pefr, max
is chosen based on trial and error and simulations.

If we were only interested in parameter estimation then
we would cut off the temperature ladder here; however, for
evidence evaluation we must explore the full parameter space.
This is the second temperature regime of evidence evaluation
via thermodynamic integration. This is most important when

(C14)
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varying the noise parameters as well as the GW parameters.
Here, we must choose an overall maximum temperature such
that we are effectively sampling from the prior. In other words,
the temperature must be sufficiently high such that the average
log-likelihood has become constant with respect to increasing
temperature. In this regime we choose a more coarse temperature
spacing with AT = 1.5 and geometric spacing. As noted in
Littenberg & Cornish (2010) a good diagnostic to ensure that
we are using a high enough temperature is to plot the mean
log-likelihood for each temperature chain versus 8.

In Figure 9 we plot the mean log-likelihood versus B for
GW plus noise (gray (blue)) and noise (black (green)) models.
First we notice that at low temperatures (high 8) the GW plus
noise model fits the data better based on the higher likelihood
values (the data has an S/N 10 GW injection) but that it has
slightly lower values at high temperature (low f) because of
the expanded prior volume due to the GW parameter space.
Since the Bayesian evidence is the area under these curves the
question that is being answered by computing a Bayes factor is
“does the fact that the GW plus noise model fit the data better
(low temperature regime) overcome the fact that that model has
a larger prior volume (high temperature regime)?” Because of
this, it is crucial that we include temperatures high enough so
that the average log likelihood becomes constant, indicating that
we are sampling the prior distribution. For this work, we find
that a maximum temperature of ~10° is sufficient.
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