160 research outputs found

    Analysis of whisker-toughened ceramic components: A design engineer's viewpoint

    Get PDF
    The use of ceramics components in gas turbines, cutting tools, and heat exchangers has been limited by the relatively low flaw tolerance of monolithic ceramics. The development of whisker toughened ceramic composites offers the potential for considerable improvement in fracture toughness as well as strength. However, the variability of strength is still too high for the application of deterministic design approaches. Several phenomenological reliability theories proposed for this material system are reviewed and the development is reported of a public domain computer algorithm. This algorithm, when coupled with a general purpose finite element program, predicts the fast fracture reliability of a structural component under multiaxial loading conditions

    Alien Registration- Demchak, Anna M. (Anson, Somerset County)

    Get PDF
    https://digitalmaine.com/alien_docs/9140/thumbnail.jp

    Analysis of Whisker-Toughened Ceramic Components -- A Design Engineer\u27s Viewpoint

    Get PDF
    The use of ceramics components in gas turbines, cutting tools, and heat exchangers has been limited by the relatively low flaw tolerance of monolithic ceramics. The development of whisker-toughened ceramic composites offers the potential for considerable improvement in fracture toughness as well as strength. However, the variability of strength is still too high for the application of deterministic design approaches. This report reviews several phenomenological reliability theories proposed for this material system, and reports on the development of a public domain computer algorithm. This algorithm, when coupled with a general-purpose finite element program, predicts the fast fracture reliability of a structural component under multiaxial loading conditions

    Determination of Safety Indicators in the Developed Muffins with Non-traditional Raw Materials

    Full text link
    The aim of research is studying the effect of unconventional raw materials (buckwheat, oatmeal, rye, corn, milk whey, skimmed milk powder, propolis, flower pollen, bean powder, sesame oil, pumpkin seed oil, walnut oil, walnut kernels, candied fruit mixes (apple-cherry fruits of bilberries, natural honey with floral pollen, natural honey with propolis) for the quality and safety of new muffins. The article analyzes the results of the study of the quality and safety indicators of muffins of improved composition, manufactured using non-traditional raw materials. For the preparation of new types of muffins, part of the wheat flour was replaced with buckwheat, corn, oat, milk whey, skimmed milk powder and additives of vegetable origin. Margarine has been replaced by vegetable oils. It has been established that flour confectionery products have high organoleptic properties. From the physico-chemical parameters, the mass fraction of total sugar was determined, which ranged from 28.17 % to 33.07 %, the mass fraction of fat – 16.2–20.66 %, the mass fraction of moisture – 18.0–22.0, mass fraction of ash – 0.03–1.3 %, alkalinity – 0.03–1.8°, the content of toxic elements (copper, zinc, lead, cadmium, arsenic, mercury) and microbiological indicators were also determined. Based on the data obtained as a research result, the expediency of using non-traditional raw materials to expand the range of flour confectionery products, in particular muffins is substantiated

    Changes in posterior scleral collagen microstructure in canine eyes with an ADAMTS10 mutation

    Get PDF
    Purpose: We aimed to characterize alterations in the posterior scleral collagen microstructure before detectable disease onset in a canine model of open-angle glaucoma caused by an ADAMTS10 mutation. Methods: Collagen orientation, anisotropy degree (proportion of preferentially aligned collagen), and relative density were measured at 0.4 mm spatial resolution using synchrotron wide-angle X-ray scattering. For statistical evaluation of structure parameters, regional averages of the peripapillary and mid-posterior sclera were compared between ADAMTS10 mutant (affected) dogs (n = 3) and age-matched (carrier) controls (n = 3). Results: No marked differences in the general pattern of preferential collagen fibril orientation were noted between the control and affected dogs. The peripapillary sclera of all specimens featured strongly aligned circumferential collagen ringing the optic nerve head. Collagen anisotropy was significantly reduced in the mid-posterior sclera of the affected dogs (carrier: 0.27±0.11; affected: 0.24±0.10; p = 0.032) but was not statistically significantly different in the peripapillary sclera (carrier: 0.46±0.15; affected: 0.45±0.17; p = 0.68). Collagen density was statistically significantly reduced in the affected dogs for the mid-posterior sclera (carrier: 28.1±9.14; affected: 18.3±5.12; p<0.0001) and the peripapillary sclera (carrier: 34.6±9.34; affected: 21.1±6.97; p = 0.0002). Conclusions: Significant alterations in the posterior scleral collagen microstructure are present before the onset of clinical glaucoma in ADAMTS10 mutant dogs. A reduction in fibrous collagen density is likely an important contributory factor in the previously reported mechanical weakening of the sclera in this model. Baseline scleral abnormalities have the potential to interact with intraocular pressure (IOP) elevations in determining the course of glaucoma progression in animal models of the disease, and potentially in human glaucoma

    Development of Design Analysis Methods for C/SiC Composite Structures

    Get PDF
    The stress-strain behavior at room temperature and at 1100 C (2000 F) was measured for two carbon-fiber-reinforced silicon carbide (C/SiC) composite materials: a two-dimensional plain-weave quasi-isotropic laminate and a three-dimensional angle-interlock woven composite. Micromechanics-based material models were developed for predicting the response properties of these two materials. The micromechanics based material models were calibrated by correlating the predicted material property values with the measured values. Four-point beam bending sub-element specimens were fabricated with these two fiber architectures and four-point bending tests were performed at room temperature and at 1100 C. Displacements and strains were measured at various locations along the beam and recorded as a function of load magnitude. The calibrated material models were used in concert with a nonlinear finite element solution to simulate the structural response of these two materials in the four-point beam bending tests. The structural response predicted by the nonlinear analysis method compares favorably with the measured response for both materials and for both test temperatures. Results show that the material models scale up fairly well from coupon to subcomponent level

    Solid Oxide Fuel Cell Seal Development at NASA Glenn Research Center

    Get PDF
    Researchers at NASA GRC are confronting the seal durability challenges of Solid Oxide Fuel Cells by pursuing an integrated and multidisciplinary development effort incorporating thermo-structural analyses, advanced materials, experimentation, and novel seal design concepts. The successful development of durable hermetic SOFC seals is essential to reliably producing the high power densities required for aerospace applications

    Influence of age on ocular biomechanical properties in a canine glaucoma model with ADAMTS10 mutation

    Get PDF
    <div><p>Soft tissue often displays marked age-associated stiffening. This study aims to investigate how age affects scleral biomechanical properties in a canine glaucoma model with <i>ADAMTS10</i> mutation, whose extracellular matrix is concomitantly influenced by the mutation and an increased mechanical load from an early age. Biomechanical data was acquired from <i>ADAMTS10-</i>mutant dogs (n = 10, 21 to 131 months) and normal dogs (n = 5, 69 to 113 months). Infusion testing was first performed in the whole globes to measure ocular rigidity. After infusion experiments, the corneas were immediately trephined to prepare scleral shells that were mounted on a pressurization chamber to measure strains in the posterior sclera using an inflation testing protocol. Dynamic viscoelastic mechanical testing was then performed on dissected posterior scleral strips and the data were combined with those reported earlier by our group from the same animal model (Palko et al, IOVS 2013). The association between age and scleral biomechanical properties was evaluated using multivariate linear regression. The relationships between scleral properties and the mean and last measured intraocular pressure (IOP) were also evaluated. Our results showed that age was positively associated with complex modulus (p<0.001) and negatively associated with loss tangent (p<0.001) in both the affected and the normal groups, suggesting an increased stiffness and decreased mechanical damping with age. The regression slopes were not different between the groups, although the complex modulus was significantly lower in the affected group (p = 0.041). The posterior circumferential tangential strain was negatively correlated with complex modulus (R = -0.744, p = 0.006) showing consistent mechanical evaluation between the testing methods. Normalized ocular rigidity was negatively correlated with the last IOP in the affected group (p = 0.003). Despite a mutation that affects the extracellular matrix and a chronic IOP elevation in the affected dogs, age-associated scleral stiffening and loss of mechanical damping were still prominent and had a similar rate of change as in the normal dogs.</p></div

    Engineering Analysis Studies for Preliminary Design of Lightweight Cryogenic Hydrogen Tanks in UAV Applications

    Get PDF
    A series of engineering analysis studies were conducted to investigate the potential application of nanoclay-enhanced graphite/epoxy composites and polymer cross-linked silica aerogels in cryogenic hydrogen storage tank designs. This assessment focused on the application of these materials in spherical tank designs for unmanned aeronautic vehicles with mission durations of 14 days. Two cryogenic hydrogen tank design concepts were considered: a vacuum-jacketed design and a sandwiched construction with an aerogel insulating core. Analyses included thermal and structural analyses of the tank designs as well as an analysis of hydrogen diffusion to specify the material permeability requirements. The analyses also provided material property targets for the continued development of cross-linked aerogels and nanoclay-enhanced graphite/epoxy composites for cryogenic storage tank applications. The results reveal that a sandwiched construction with an aerogel core is not a viable design solution for a 14-day mission. A vacuum-jacketed design approach was shown to be far superior to an aerogel. Aerogel insulation may be feasible for shorter duration missions. The results also reveal that the application of nanoclay-enhanced graphite/epoxy should be limited to the construction of outer tanks in a vacuum-jacketed design, since a graphite/epoxy inner tank does not provide a significant weight savings over aluminum and since the ability of nanoclay-enhanced graphite/epoxy to limit hydrogen permeation is still in question

    Compact high-temperature cell for Brillouin scattering measurements

    Get PDF
    A compact ceramic high-temperature cell for Brillouin spectroscopy was designed and tested. The cell can be mounted onto a three- or four-circle goniometer and allows collection of the full set of elastic constants of minerals to temperatures in excess of 1500 K from samples with dimensions of 100×100×20 µm or smaller. As a test of the instrument the single-crystal elastic constants of MgO were measured to 1510(10) K, and are found to be in excellent agreement with earlier independent results. The high-temperature cell should be useful for other types of spectroscopic measurements, and is especially useful in situations where spectral properties vary with the scattering geometry
    • …
    corecore