1,019 research outputs found

    Proximity Effects in Radiative Transfer

    Full text link
    Though the dependence of near-field radiative transfer on the gap between two planar objects is well understood, that between curved objects is still unclear. We show, based on the analysis of the surface polariton mediated radiative transfer between two spheres of equal radii RR and minimum gap dd, that the near--field radiative transfer scales as R/dR/d as d/R0d/R \rightarrow 0 and as ln(R/d)\ln(R/d) for larger values of d/Rd/R up to the far--field limit. We propose a modified form of the proximity approximation to predict near--field radiative transfer between curved objects from simulations of radiative transfer between planar surfaces.Comment: 5 journal pages, 4 figure

    Material dependence of Casimir forces: gradient expansion beyond proximity

    Get PDF
    A widely used method for estimating Casimir interactions [H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948)] between gently curved material surfaces at short distances is the proximity force approximation (PFA). While this approximation is asymptotically exact at vanishing separations, quantifying corrections to PFA has been notoriously difficult. Here we use a derivative expansion to compute the leading curvature correction to PFA for metals (gold) and insulators (SiO2_2) at room temperature. We derive an explicit expression for the amplitude θ^1\hat\theta_1 of the PFA correction to the force gradient for axially symmetric surfaces. In the non-retarded limit, the corrections to the Casimir free energy are found to scale logarithmically with distance. For gold, θ^1\hat\theta_1 has an unusually large temperature dependence.Comment: 4 pages, 2 figure

    Giant Modal Gain, Amplified Surface Plasmon Polariton Propagation, and Slowing Down of Energy Velocity in a Metal-Semiconductor-Metal Structure

    Full text link
    We investigated surface plasmon polariton (SPP) propagation in a metal-semiconductor-metal structure where semiconductor is highly excited to have optical gain. We show that near the SPP resonance, the imaginary part of the propagation wavevector changes from positive to hugely negative, corresponding to an amplified SPP propagation. The SPP experiences a giant gain that is 1000 times of material gain in the excited semiconductor. We show that such a giant gain is related to the slowing down of average energy propagation in the structur

    Quantum and thermal Casimir interaction between a sphere and a plate: Comparison of Drude and plasma models

    Full text link
    We calculate the Casimir interaction between a sphere and a plate, both described by the plasma model, the Drude model, or generalizations of the two models. We compare the results at both zero and finite temperatures. At asymptotically large separations we obtain analytical results for the interaction that reveal a non-universal, i.e., material dependent interaction for the plasma model. The latter result contains the asymptotic interaction for Drude metals and perfect reflectors as different but universal limiting cases. This observation is related to the screening of a static magnetic field by a London superconductor. For small separations we find corrections to the proximity force approximation (PFA) that support correlations between geometry and material properties that are not captured by the Lifshitz theory. Our results at finite temperatures reveal for Drude metals a non-monotonic temperature dependence of the Casimir free energy and a negative entropy over a sizeable range of separations.Comment: 11 pages, 5 figure

    Influence of the magnetic field on the plasmonic properties of transparent Ni anti-dot arrays

    Get PDF
    Extraordinary optical transmission is observed due to the excitation of surface plasmon polaritons (SPPs) in 2-Dimensional hexagonal anti-dot patterns of pure Ni thin films, grown on sapphire substrates. A strong enhancement of the polar Kerr rotation is recorded at the surface plasmon related transmission maximum. Angular resolved reflectivity measurements under an applied field, reveal an enhancement and a shift of the normalized reflectivity difference upon reversal of the magnetic saturation (transverse magneto-optical Kerr effect-TMOKE). The change of the TMOKE signal clearly shows the magnetic field modulation of the dispersion relation of SPPs launched in a 2D patterned ferromagnetic Ni film

    Long-Term Effects of Alternative Group Selection Harvesting Designs on Stand Production

    Get PDF
    Interest in group selection harvesting has increased in recent years because of limitations associated with both clearcutting and single-tree selection. Field data have suggested that group selection openings can have higher production rates than single-tree gaps, but whether this translates into higher production rates at the stand level is not clear. We used CANOPY, a crown-based northern hardwoods model calibrated with data from uneven-aged and even-aged stands, to simulate sustainable harvest volumes of a number of different group selection approaches over 300 years, and also compared results with those from single-tree selection and clearcutting. When a combination of single-tree and group selection was used with groups making up 3% of the stand area per cutting cycle, net harvestable production rates were similar to those of single-tree selection, and opening size (100-4000m2) had little effect on production rates. As the percentage of the matrix in groups increased from 1 to 9% per cutting cycle, production actually showed a small but consistent decline of about 6 to 7%. When group selection was used alone with no cutting between the groups, production rates varied considerably depending on opening size and rotation age. Small group selection (200 m2) had production rates similar to or slightly higher than single-tree selection, whereas 2000 m2 openings resulted in a production declines of 30 to 35%. Large patch sizes appear to have relatively low net production because of unsalvaged mortality. Similar trends were observed in unthinned even-aged stands compared to those thinned at 15-yr intervals. Although our results confirmed that trees in even-aged stands are more efficient producers than those in uneven-aged stands, there appear to be countervailing tendencies that reduce production rates in large single-cohort patches, including a lag time during the first few decades when production rates of merchantable volume in large openings are very low

    Comparison between experiment and theory for the thermal Casimir force

    Full text link
    We analyze recent experiments on measuring the thermal Casimir force with account of possible background effects. Special attention is paid to the validity of the proximity force approximation (PFA) used in the comparison between the experimental data and computational results in experiments employing a sphere-plate geometry. The PFA results are compared with the exact results where they are available. The possibility to use fitting procedures in theory-experiment comparison is discussed. On this basis we reconsider experiments exploiting spherical lenses of centimeter-size radii.Comment: Plenary talk at the 10th International Conference "Quantum Field Theory Under the Influence of External Conditions" (Benasque, Spain, 2011); 16 pages, 5 figure

    Resonant photon tunneling enhancement of the van der Waals friction

    Get PDF
    We study the van der Waals friction between two flat metal surfaces in relative motion. For good conductors we find that normal relative motion gives a much larger friction than for parallel relative motion. The friction may increase by many order of magnitude when the surfaces are covered by adsorbates, or can support low-frequency surface plasmons. In this case the friction is determined by resonant photon tunneling between adsorbate vibrational modes, or surface plasmon modes.Comment: Published in PR

    Phase-change chalcogenide glass metamaterial

    Full text link
    Combining metamaterials with functional media brings a new dimension to their performance. Here we demonstrate substantial resonance frequency tuning in a photonic metamaterial hybridized with an electrically/optically switchable chalcogenide glass. The transition between amorphous and crystalline forms brings about a 10% shift in the near-infrared resonance wavelength of an asymmetric split-ring array, providing transmission modulation functionality with a contrast ratio of 4:1 in a device of sub-wavelength thickness.Comment: 3 pages, 3 figure

    Optical detection of spin transport in non-magnetic metals

    Full text link
    We determine the dynamic magnetization induced in non-magnetic metal wedges composed of silver, copper and platinum by means of Brillouin light scattering (BLS) microscopy. The magnetization is transferred from a ferromagnetic Ni80Fe20 layer to the metal wedge via the spin pumping effect. The spin pumping efficiency can be controlled by adding an insulating but transparent interlayer between the magnetic and non-magnetic layer. By comparing the experimental results to a dynamical macroscopic spin-transport model we determine the transverse relaxation time of the pumped spin current which is much smaller than the longitudinal relaxation time
    corecore