research

Material dependence of Casimir forces: gradient expansion beyond proximity

Abstract

A widely used method for estimating Casimir interactions [H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948)] between gently curved material surfaces at short distances is the proximity force approximation (PFA). While this approximation is asymptotically exact at vanishing separations, quantifying corrections to PFA has been notoriously difficult. Here we use a derivative expansion to compute the leading curvature correction to PFA for metals (gold) and insulators (SiO2_2) at room temperature. We derive an explicit expression for the amplitude θ^1\hat\theta_1 of the PFA correction to the force gradient for axially symmetric surfaces. In the non-retarded limit, the corrections to the Casimir free energy are found to scale logarithmically with distance. For gold, θ^1\hat\theta_1 has an unusually large temperature dependence.Comment: 4 pages, 2 figure

    Similar works