249 research outputs found

    Looking under the Hood of Active Credit Managers

    Get PDF
    Extensive research has explored the style exposures of actively managed equity funds. We conducted an exhaustive set of return-based and holdings-based analyses to understand actively managed credit funds. We found that credit long–short managers tend to have high passive exposure to the credit risk premium. In contrast, we found that long-only managers that focus on high-yield credits provide less exposure to the credit risk premium than do their respective benchmarks. For both credit hedge funds and long-only credit mutual funds, we found that neither has economically meaningful exposures to well-compensated systematic factors

    An all-order proof of the equivalence between Gribov's no-pole and Zwanziger's horizon conditions

    Get PDF
    The quantization of non-Abelian gauge theories is known to be plagued by Gribov copies. Typical examples are the copies related to zero modes of the Faddeev-Popov operator, which give rise to singularities in the ghost propagator. In this work we present an exact and compact expression for the ghost propagator as a function of external gauge fields, in SU(N) Yang-Mills theory in the Landau gauge. It is shown, to all orders, that the condition for the ghost propagator not to have a pole, the so-called Gribov's no-pole condition, can be implemented by demanding a nonvanishing expectation value for a functional of the gauge fields that turns out to be Zwanziger's horizon function. The action allowing to implement this condition is the Gribov-Zwanziger action. This establishes in a precise way the equivalence between Gribov's no-pole condition and Zwanziger's horizon condition.Comment: 11 pages, typos corrected, version accepted for publication in Phys. Lett.

    Nonperturbative aspects of Euclidean Yang-Mills theories in linear covariant gauges : Nielsen identities and a BRST-invariant two-point correlation function

    Get PDF
    In order to construct a gauge-invariant two-point function in a Yang-Mills theory, we propose the use of the all-order gauge-invariant transverse configurations A(h). Such configurations can be obtained through the minimization of the functional A(min)(2) along the gauge orbit within the BRST-invariant formulation of the Gribov-Zwanziger framework recently put forward in [1,2] for the class of the linear covariant gauges. This correlator turns out to provide a characterization of nonperturbative aspects of the theory in a BRST-invariant and gauge-parameter-independent way. In particular, it turns out that the poles of are the same as those of the transverse part of the gluon propagator, which are also formally shown to be independent of the gauge parameter alpha entering the gauge condition through the Nielsen identities. The latter follow from the new exact BRST-invariant formulation introduced before. Moreover, the correlator enables us to attach a BRST-invariant meaning to the possible positivity violation of the corresponding temporal Schwinger correlator, giving thus for the first time a consistent, gauge parameter independent, setup to adopt the positivity violation of as a signature for gluon confinement. Finally, in the context of gauge theories supplemented with a fundamental Higgs field, we use to probe the pole structure of the massive gauge boson in a gauge-invariant fashion

    The complex channel networks of bone structure

    Full text link
    Bone structure in mammals involves a complex network of channels (Havers and Volkmann channels) required to nourish the bone marrow cells. This work describes how three-dimensional reconstructions of such systems can be obtained and represented in terms of complex networks. Three important findings are reported: (i) the fact that the channel branching density resembles a power law implies the existence of distribution hubs; (ii) the conditional node degree density indicates a clear tendency of connection between nodes with degrees 2 and 4; and (iii) the application of the recently introduced concept of hierarchical clustering coefficient allows the identification of typical scales of channel redistribution. A series of important biological insights is drawn and discussedComment: 3 pages, 1 figure, The following article has been submitted to Applied Physics Letters. If it is published, it will be found online at http://apl.aip.org

    Implementing the Gribov-Zwanziger framework in N=1 Super Yang-Mills in the Landau gauge

    Get PDF
    The Gribov-Zwanziger framework accounting for the existence of Gribov copies is extended to N=1 Super Yang--Mills theories quantized in the Landau gauge. We show that the restriction of the domain of integration in the Euclidean functional integral to the first Gribov horizon can be implemented in a way to recover non-perturbative features of N=1 Super Yang--Mills theories, namely: the existence of the gluino condensate as well as the vanishing of the vacuum energy.Comment: 19 pages, no figure

    An exact nilpotent non-perturbative BRST symmetry for the Gribov-Zwanziger action in the linear covariant gauge

    Get PDF
    We point out the existence of a non-perturbative exact nilpotent BRST symmetry for the Gribov-Zwanziger action in the Landau gauge. We then put forward a manifestly BRST invariant resolution of the Gribov gauge fixing ambiguity in the linear covariant gauge.Comment: 8 pages. v2: version accepted for publication in PhysRev
    • …
    corecore