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Abstract

In order to construct a gauge invariant two-point function in a Yang-Mills theory, we propose the
use of the all-order gauge invariant transverse configurationsAh. Such configurations can be obtained
through the minimization of the functionalA2

min along the gauge orbit within the BRST invariant for-
mulation of the Gribov-Zwanziger framework recently put forward in [1, 2] for the class of the linear
covariant gauges. This correlator turns out to provide a characterization of non-perturbative aspects
of the theory in a BRST invariant and gauge parameter independent way. In particular, it turns out
that the poles of〈Ah

µ(k)A
h
ν(−k)〉 are the same as those of the transverse part of the gluon propaga-

tor, which are also formally shown to be independent of the gauge parameterα entering the gauge
condition through the Nielsen identities. The latter follow from the new exact BRST invariant for-
mulation introduced before. Moreover, the correlator〈Ah

µ(k)A
h
ν(−k)〉 enables us to attach a BRST

invariant meaning to the possible positivity violation of the corresponding temporal Schwinger cor-
relator, giving thus for the first time a consistent, gauge parameter independent, setup to adopt the
positivity violation of 〈Ah

µ(k)A
h
ν(−k)〉 as a signature for gluon confinement. Finally, in the context

of gauge theories supplemented with a fundamental Higgs field, we use〈Ah
µ(k)A

h
ν(−k)〉 to probe the

pole structure of the massive gauge boson in a gauge invariant fashion.
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1 Introduction

In this paper we give a sequel to our previous works [1, 2], where an exact BRST invariant local formu-
lation for the Gribov-Zwanziger (GZ) framework [3, 4] was derived in the class of the linear covariant
gauges. In its original original version [3, 4], the Gribov-Zwanziger setup was outlined in the Landau
gauge,∂µAa

µ = 0, in order to take into account the non-perturbative phenomenon of the existence of
Gribov copies, which affects the Faddeev-Popov quantization prescription.

According to [3, 4], the main idea to face the issue of the Gribov copies was to restrict the functional
integral to a certain regionΩ in field space, called the Gribov region, which is defined as

Ω = { Aa
µ| ∂µAa

µ = 0, M ab(A)> 0 } , (1.1)

whereM ab(A) is the Hermitian Faddeev-Popov operator

M ab =−δab∂2+g fabcAc
µ∂µ, with ∂µAa

µ = 0. (1.2)

Later on, important properties of the regionΩ were rigorously established [6], namely:

i) Ω is convex, a property which follows from the linearity of theFaddeev-Popov operatorM ab.

ii) Ω is bounded in all directions in field space. The boundary∂Ω, where the first vanishing eigenvalue
of the Faddeev-Popov operator shows up, is called the first Gribov horizon.

iii) Every gauge orbit crosses at least once the regionΩ.

In particular, propertyiii) gives a well defined support to the restriction to the regionΩ. Remarkably,
a local and renormalizable action1 can be constructed for the restriction toΩ: the so-called Gribov-
Zwanziger action, see [5] for a general review.

In [1, 2], we have been able to move away from the Landau gauge,generalizing the Gribov-Zwanziger
construction to the class of the linear covariant gauges, i.e. ∂µAµ = iαb, whereα is the (non-negative)
gauge parameter. Obviously, the Landau gauge can be seen as aparticular case of the linear covariant
gauges, corresponding toα = 0. Moreover, as already mentioned, we were able, for the firsttime, to
write down an exact nilpotent BRST symmetry of the Gribov-Zwanziger action in the linear covariant
gauges which has enabled us to derive a set of important properties, namely: the independence fromα
of the BRST invariant correlation functions and an exact allorder prediction for the longitudinal part of
the gluon propagator which agrees with the available lattice numerical simulations as well as with the
results based on the analysis of the Dyson-Schwinger equations, see eq. (3.35) and related comments
at the end of Section 3. Recent progress on the extension of the Gribov-Zwanziger set up to the linear
covariant gauges was also done in [9, 10]. It is worth mentioning that in [11], a non-perturbative BRST
symmetry was constructed for the Gribov-Zwanziger action in the maximal Abelian gauge and in [12], a
non-perturbative BRST quantization was proposed for Curci-Ferrari gauges.

The main tool employed in the analysis [1, 2] has been the introduction of a transverse and order by order
gauge invariant fieldAh

µ

∂µAh
µ = 0 , δAh

µ = 0 , (1.3)

1We remind here thatΩ itself is not completely free from Gribov copies [7, 8], i.e.additional copies still exist insideΩ. A
smaller region withinΩ exists which is fully free from Gribov copies. This region iscalled the fundamental modular region.
Though, unlike the case of the Gribov regionΩ, a local and renormalizable framework implementing the restriction to the
fundamental modular region is, at present, unknown. Therefore, we shall proceed by focusing on the regionΩ.
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whereδ stands for the generator of an infinitesimal gauge transformation. As a consequence, the corre-
lation function

〈Ah
µ(k)A

h
ν(−k)〉 , (1.4)

is transverse and turns out to be left invariant by the BRST transformations. As such, it is independent
of the gauge parameterα entering the gauge condition. For the benefit of the reader, some details of the
construction of the transverse gauge invariant fieldAh

µ have been surveyed in Section 2.

The aim of the present work is that of establishing useful relationships between the correlation function
(1.4) and the transverse component of the gluon propagator,i.e.

〈Aµ(k)Aν(−k)〉T =

(

δµρ −
kµkρ

k2

)

〈Aρ(k)Aν(−k)〉 . (1.5)

In particular, we shall be able to show that:

• the poles of the transverse component of the gluon propagator (1.5) are independent of the gauge
parameterα. This nice property follows from the Nielsen identities forthe two-point gluon corre-
lation function which can be derived from the Slavnov-Taylor identities corresponding to the exact
nilpotent BRST symmetry of the Gribov-Zwanziger action in the linear covariant gauges [1, 2].
We point out that, in the present case, the study of the Nielsen identities requires a lengthy anal-
ysis, due to the existence of a nontrivial set of mixed propagators, a structure typical of the local
Gribov-Zwanziger formulation. Sections 3, 4 and Appendices B, C contain the detailed analysis of
the structure of the Nielsen identities. We will also brieflydiscuss the relation between the Nielsen
identities and Landau-Khalatnikov-Fradkin transformations.

• a second property which we shall be able to prove is that the BRST invariant correlation function
(1.4) coincides with the gluon propagator evaluated in the Landau gauge, namely

〈Ah
µ(k)A

h
ν(−k)〉= 〈Aµ(k)Aν(−k)〉Landau= 〈Aµ(k)Aν(−k)〉α=0 , (1.6)

a relation which gives a quite practical way to evaluate〈Ah
µ(k)A

h
ν(−k)〉. Moreover, taking into

account that the poles of the transverse part of the gluon propagator, eq. (1.5), are independent of
α, it follows immediately that the poles of〈Ah

µ(k)A
h
ν(−k)〉 and those of〈Aµ(k)Aν(−k)〉T are the

same, and this for a generic value ofα.

• these two properties enable us to consider the BRST invariant correlation function〈Ah
µ(k)A

h
ν(−k)〉

as the natural candidate to discuss the positivity violation of the gluon propagator in a BRST and
α-independent way, via the evaluation of the corresponding temporal Schwinger correlator, a topic
which will be addressed in Section 5. This is a rather relevant issue, as the positivity violation is
nowadays taken as a strong indication of gluon confinement, see for instance [13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25] and references therein. In thissense, it is certainly worth to have at
our disposal a BRST invariant framework to look at it.

We end the paper with an application to the study of the massesof the transverse component of the
gluon propagator when Higgs fields in the fundamental representation ofSU(2) are added to the Gribov-
Zwanziger action.
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2 Survey of the construction of the gauge invariant transverse fieldAh
µ

The gauge invariant configurationAh
µ, see Appendix A and [1], is constructed by minimizing the func-

tional fA[u] along the gauge orbit ofAµ [6, 7, 26], namely

fA[u] ≡ min
{u}

Tr
∫

d4xAu
µAu

µ ,

Au
µ = u†Aµu+

i
g

u†∂µu . (2.1)

In particular, the stationarity condition of the functional (2.1) gives rise to a non-local transverse field
configurationAh

µ, ∂µAh
µ = 0, which can be expressed as an infinite series in the gauge field Aµ, i.e.

Ah
µ =

(

δµν −
∂µ∂ν

∂2

)

φν , ∂µAh
µ = 0 ,

φν = Aν− ig

[
1
∂2 ∂A,Aν

]

+
ig
2

[
1
∂2∂A,∂ν

1
∂2∂A

]

+O(A3) . (2.2)

Remarkably, the configurationAh
µ turns out to be left invariant by infinitesimal gauge transformations

order by order in the gauge couplingg [27] (see also Appendix A and the next Section) as

δAh
µ = 0 ,

δAµ = −∂µω+ ig [Aµ,ω] . (2.3)

From expression (2.1) it follows thus that

A2
min = Tr

∫
d4xAh

µAh
µ ,

=
1
2

∫
d4x

[

Aa
µ

(

δµν −
∂µ∂ν

∂2

)

Aa
ν −g fabc

(
∂ν

∂2 ∂Aa
)(

1
∂2 ∂Ab

)

Ac
ν

]

+O(A4) . (2.4)

The gauge-invariant nature of expression (2.4) can be made manifest by rewriting it in terms of the field
strengthFµν. In fact, as proven in [26], it turns out that

A2
min = −1

2
Tr

∫
d4x

(

Fµν
1

D2Fµν +2i
1

D2Fλµ

[
1

D2DκFκλ,
1

D2DνFνµ

]

−2i
1

D2Fλµ

[
1

D2DκFκν,
1

D2DνFλµ

])

+O(F4) , (2.5)

from which the gauge invariance becomes apparent. The operator (D2)−1 in expression (2.5) denotes the
inverse of the covariant LaplacianD2 = DµDµ with Dµ being the covariant derivative [26].

3 Specification of a local and BRST invariant non-perturbative action
and its Slavnov-Taylor identities

Let us proceed by specifying the non-perturbative local BRST invariant action which will be taken as our
starting point. In order to take into account the non-perturbative effects of the existence of the Gribov
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copies, we shall make use of the BRST invariant Gribov-Zwanziger action in linear covariant gauges as
recently worked out in [1, 2, 28, 29]:

S= SYM+SFP+SGZ+Sτ , (3.1)

where

SYM =
1
4

∫
d4xFa

µνFa
µν , (3.2)

while SFP denotes the Faddeev-Popov gauge-fixing in linear covariantgauges, i.e.

SFP =

∫
d4x
(α

2
baba+ iba ∂µAa

µ+ c̄a∂µDab
µ (A)cb

)

, (3.3)

whereα is a non-negative gauge parameter,ba the Lagrange multiplier and(ca, c̄a) the Faddeev-Popov
ghosts. The Faddeev-Popov operator is given by

M ab(A)•=−δab∂2•+g fabc∂µ(A
c
µ•) . (3.4)

The termSGZ in expression (3.1) stands for the Gribov-Zwanziger actionin its local form, as constructed
in [1, 2, 28, 29], namely

SGZ =

∫
d4x

(

−ϕ̄ac
ν M ab(Ah)ϕbc

ν + ω̄ac
ν M ab(Ah)ωbc

ν + γ2g fabc(Ah)a
µ(ϕ

bc
µ + ϕ̄bc

µ )
)

, (3.5)

whereM ab(Ah) denotes the gauge invariant counterpart of the Faddeev-Popov operator which, as a
consequence of the transversality of the configuration(Ah)a

µ, reads

M ab(Ah) =−δab∂2+g fabc(Ah)c
µ∂µ . (3.6)

Unlike expression (3.4), the operatorM ab(Ah), eq. (3.6), is Hermitian due to the transverse character of
Ah.

Following [1, 2, 28, 29], the fieldAh
µ can be localised by means of the introduction of an auxiliary

Stueckelberg fieldξa, i.e.

Ah
µ = (Ah)a

µTa = h†Aa
µTah+

i
g

h†∂µh, (3.7)

with
h= eigξaTa

. (3.8)

The local invariance under a gauge transformu ∈ SU(N) of the fieldAh
µ can now also be appreciated

from the transformation prescriptions

h→ u†h, h† → h†u, Aµ → u†Aµu+
i
g

u†∂µu (3.9)

The fields(ϕ̄ab
µ ,ϕab

µ ) are a pair of bosonic fields, while(ω̄ab
µ ,ωab

µ ) are anti-commuting fields. These fields
are employed to cast in local form Zwanziger’s horizon term needed to get rid of the zero modes affecting
the Faddeev-Popov operator (3.4). The mathematical justification of our construction can be found in
[1].

Finally, the term

Sτ =
∫

d4x τa∂µ(A
h)a

µ , (3.10)
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implements, through the Lagrange multiplierτ, the transversality of the fieldAh, ∂µ(Ah)a
µ = 0, which can

be seen as a constraint on the Stueckelberg field. Indeed, if the Stueckelberg fieldξa is eliminated through
the transversality constraint∂µ(Ah)a

µ = 0, we get back the non-local expression for the fieldAh
µ, eq. (2.2).

This constraint also plays a crucial role to maintain the ultraviolet renormalizability of the theory [29, 34].
If we simply setSτ = 0, we would end up with similar power counting non-renormalizability issues as
those plaguing the original Stueckelberg model [30].

As pointed out in [1, 2, 28, 29], the actionSenjoys an exact nilpotent BRST invariance, namely

sS= 0 , s2 = 0 (3.11)

with the following full set of local transformations definedas

sAa
µ = −Dab

µ cb , sca =
g
2

f abccbcc ,

sc̄a = iba , sba = 0.

shi j = −igca(Ta)ikhk j

sϕab
µ = 0, sωab

µ = 0,

sω̄ab
µ = 0, sϕ̄ab

µ = 0,

sτa = 0. (3.12)

The BRST invariance of the actionS follows immediately by noticing that the fieldAh
µ, eq. (3.7), is left

invariant under the BRST transformations, i.e.

s(Ah)a
µ = 0 . (3.13)

Also, the BRST transformation of the Stueckelberg fieldξa can be constructed iteratively from(shi j ),
obtaining

sξa =−ca+
g
2

f abccbξc− g2

12
f amr f mpqcpξqξr +O(g3) . (3.14)

3.1 Slavnov-Taylor identities

The BRST invariance of the actionS can be translated at the functional level into powerful Slavnov-
Taylor identities. To that purpose we employ the trick of extending the BRST transformations on the
gauge parameterα, see [31, 32, 2], i.e.

sα = χ , sχ = 0 , (3.15)

whereχ is a parameter with ghost number 1, which will be set to zero torestore the initial theory. As
explained in [31, 32, 2], the extended BRST transformations, eqs. (3.12), (3.15), will permit us to keep
control of the dependence of the Green functions from the gauge parameterα at the quantum level.

Taking into account the extended BRST transformation (3.15), the gauge fixing term becomes now

s
∫

d4x
(

−i
α
2

c̄aba+ c̄a∂µAa
µ

)

=
∫

d4x
(α

2
baba+ iba∂µAa

µ− i
χ
2

c̄aba+ c̄a∂µDab
µ (A)cb

)

, (3.16)

so that the action (3.1) reads

S = SYM+

∫
d4x

(

α
baba

2
+ iba∂µAa

µ− i
χ
2

c̄aba+ c̄a∂µDab
µ (A)cb

)

+

∫
d4x τa∂µ(A

h)a
µ

+

∫
d4x
(

−ϕ̄ac
µ M (Ah)abϕbc

µ + ω̄ac
µ M (Ah)abωbc

µ +gγ2 f abc(Ah)a
µ(ϕ

bc
µ + ϕ̄bc

µ )
)

.

(3.17)
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We are now ready to establish the Ward identities of the theory. Following the general procedure of the
algebraic renormalization [31], we introduce a set of BRST-invariant external sources(Ωa

µ,L
a,Ka,J a

µ )
coupled, respectively, to the non-linear BRST variations of the elementary fields(Aa

µ,c
a,ξa) as well to

the composite operator(Ah)a
µ. Namely, we start with the complete classical action

Σ = S+
∫

d4x J a
µ (A

h)a
µ+

∫
d4x
(
Ωa

µ(sAa
µ)+La(sca)+Ka(sξa)

)
, (3.18)

where
sΣ = 0. (3.19)

The complete actionΣ turns out to obey the following Slavnov-Taylor identity,

S(Σ) = 0 , (3.20)

where

S(Σ) =
∫

d4x

(

δΣ
δΩa

µ

δΣ
δAa

µ
+

δΣ
δLa

δΣ
δca +

δΣ
δKa

δΣ
δξa + iba δΣ

δc̄a

)

+χ
∂Σ
∂α

. (3.21)

It was already shown in [29] that, when the Gribov horizon is removed, corresponding to setγ2 = 0, the
actionΣ, eq. (3.18), is renormalizable to all orders of perturbation theory. Relying on the discussion of
[33], which was essentially based on the observation that the Gribov-type gluon propagator following
from the actionS, see eqs. (3.35), (3.36), displays a scalar form factor thatcan be decomposed as

k2

k4+2g2Nγ4 =
1
k2 −

2g2Nγ4

k2(k4+2g2Nγ4)
, (3.22)

and generalizations thereof, one does expect that, once renormalizability has been proven forγ2 = 0, it
will be preserved whenγ 6= 0, given the strongly suppressed UV fall-off of the second term in eq. (3.22),
which encodes in fact the dependence from the parameterγ. A formal proof to all orders based on the
Ward identities is under construction [34] and will be presented in a separate detailed work. Keeping this
in mind, the Slavnov-Taylor identities hold at the quantum level, namely

S(Γ) = 0 , (3.23)

with

S(Γ) =
∫

d4x

(

δΓ
δΩa

µ

δΓ
δAa

µ
+

δΓ
δLa

δΓ
δca +

δΓ
δKa

δΓ
δξa + iba δΓ

δc̄a

)

+χ
∂Γ
∂α

, (3.24)

whereΓ denotes the generator of the 1PI Green functions of the model. The identities (3.23) have
far-reaching consequences, already exploited in part in [2], where an all order algebraic proof of the
independence from the gauge parameterα of the correlation functions of BRST invariant operators has
been given, together with an exact prediction for the longitudinal part of the gluon propagator.

Let us give a closer look at the two-point correlation functions of the model. To that end we introduce
the generatorZc of the connected Green’s functions through the Legendre transformation

Γ = Zc+∑
i

∫
d4xJi(x)φi(x) , (3.25)

φi(x) =−δZc

δJi
(x) , Ji(x) =

δΓ
δφi(x)

, (3.26)
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where{φi} is a short-hand notation for all fields and{Ji} for the external sources introduced for each
field φi . The propagators of the elementary fields〈φi(x)φ j (y)〉, corresponding to the connected two-point
correlation functions are given by

Gφiφ j (x−y) = 〈φi(x)φ j (y)〉 =
δZc

δJi(x)δJj(y)

∣
∣
∣
J=0

. (3.27)

Also, from eq. (3.26), we get2

δi j =
δ2Γ

δφiδJj
= ∑

k

δ2Γ
δφiδφk

δφk

δJj
=−∑

k

δ2Γ
δφiδφk

δ2Zc

δJkδJj
, (3.28)

i.e.

∑
k

ΓφiφkGφkφ j =−δi j (3.29)

where we have definedΓφiφk ≡ δ2Γ
δφiδφk

.

When written in terms of the connected generating functional, the Slavnov-Taylor identity (3.23) takes
the form

∫
d4x

(

JAa
µ
(x)

δZc

δΩa
µ(x)

−Jca(x)
δZc

δLa(x)
+Jξa(x)

δZc

δKa(x)
+ iJc̄a(x)

δZc

δJba(x)

)

+χ
∂Zc

∂α
= 0. (3.30)

Acting, for example, with the test operators

δ2

δJϕab
µ
(x)δJϕ̄cd

ν
(y)

,
δ2

δJϕab
µ
(x)δJϕcd

ν
(y)

,
δ2

δJϕ̄ab
µ
(x)δJϕ̄cd

ν
(y)

, (3.31)

and setting all sources to zero, we immediately get that the propagators〈ϕab
µ (k)ϕ̄cd

ν (−k)〉, 〈ϕab
µ (k)ϕcd

ν (−k)〉,
〈ϕ̄ab

µ (k)ϕ̄cd
ν (−k)〉 are independent of the gauge parameterα, namely

∂〈ϕab
µ (k)ϕ̄cd

ν (−k)〉
∂α

=
∂〈ϕab

µ (k)ϕcd
ν (−k)〉

∂α
=

∂〈ϕ̄ab
µ (k)ϕ̄cd

ν (−k)〉
∂α

= 0 , (3.32)

a result which follows by observing that the fields(ϕab
µ , ϕ̄ab

µ ) are left invariant by the BRST transforma-
tions and, moreover, they interact only with the BRST invariant field(Ah)a

µ . Likewise, acting with the
test operators

δ2

δJ a
µ (x)δJ b

ν (y)
,

δ2

δJ a
µ (x)δJϕcd

ν
(y)

,
δ2

δJ a
µ (x)δJϕ̄cd

ν
(y)

, (3.33)

we get
∂〈Ah,a

µ (k)Ah,b
ν (−k)〉

∂α
=

∂〈Ah,a
µ (k)ϕcd

ν (−k)〉
∂α

=
∂〈Ah,a

µ (k)ϕ̄cd
ν (−k)〉

∂α
= 0 . (3.34)

Finally, we remind that, according to [28, 2], for the gluon propagator we have

〈Aa
µ(k)A

b
ν(−k)〉= δab

(

δµν −
kµkν

k2

)

GT
AA(k

2)+δab α
k2

kµkν

k2 , (3.35)

showing that the introduction of the Gribov horizon does notmodify the longitudinal component which
remains equal to its standard perturbative expression. This result is supported by independent studies of

2The sum overk implicitly includes an integration.
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the linear covariant gauge beyond perturbation theory, see[35, 36, 37] for a lattice verification. Dyson-
Schwinger equation’s studies of the linear covariant gauges [38, 39, 40] automatically incorporate the
aforementioned behaviour of the longitudinal component asgiven by the standard Slavnov-Taylor iden-
tity is part of the premisses in this formalism. Yet another approach to deal with the linear covariant
gauge can be found in [41, 42].

In the present case, the tree level expression forGT
AA(k

2) is given by the Gribov type propagator

GT
AA(k

2)
∣
∣
∣
tree level

=
k2

k4+2g2Nγ4 . (3.36)

4 Nielsen identity for the gluon propagator

We are now ready to derive the Nielsen identity for the gluon propagator [43, 44, 45]. Roughly speak-
ing, the Nielsen identities are a way to control the gauge parameter dependence of certain correlation
functions and are ultimately a consequence of the BRST invariance [46].

Though, in the present case the task is not straightforward,due to the existence of mixed propagators. Let
us begin by finding the relationship between the transverse component of the gluon propagatorGT

AA(k
2)

and the 1PI two-point functions of the elementary fields. From eq. (3.29), we have

ΓAa
µAc

σ(k)GAc
σAb

ν
(−k)+ΓAa

µbc(k)GbcAb
ν
(−k)+ΓAa

µξc(k)GξcAb
ν
(−k)+ΓAa

µτc(k)GτcAb
ν
(−k)

+ΓAa
µϕcd

σ
(k)Gϕcd

σ Ab
ν
(−k)+ΓAa

µϕ̄cd
σ
(k)Gϕ̄cd

σ Ab
ν
(−k) =−δabδµν . (4.1)

Multiplying by the transverse projector

Pµν(k) = δµν −
kµkν

k2 , (4.2)

and taking into account Lorentz invariance, we get

ΓT
Aa

µAc
σ
(k)GT

Ac
σAb

ν
(−k)+ΓT

Aa
µϕcd

σ
(k)GT

ϕcd
σ Ab

ν
(−k)+ΓT

Aa
µϕ̄cd

σ
(k)GT

ϕ̄cd
σ Ab

ν
(−k) =−δabPµν(k) . (4.3)

From global color invariance and the absence of the totally symmetric tensordabc (cf. discussion in the
next section), we may set3

ΓT
Aa

µAc
σ
(k) = δacPµσ(k) ΓT

AA(k
2) ,

ΓT
Aa

µϕcd
σ
(k) = ΓT

Aa
µϕ̄cd

σ
(k) = f acdPµσ(k) ΓT

Aϕ(k
2) ,

GT
Ac

σAb
ν
(−k) = δcbPσν(k)G

T
AA(k

2) ,

GT
ϕcd

σ Ab
ν
(−k) = GT

ϕ̄cd
σ Ab

ν
(−k) = f bcdPνσ(k)G

T
Aϕ(k

2) , (4.4)

so that
ΓT

AA(k
2)GT

AA(k
2)+2NΓT

Aϕ(k
2)GT

Aϕ(k
2) =−1 , (4.5)

which gives
1

GT
AA

=− ΓT
AA

1+2NΓT
AϕGT

Aϕ
. (4.6)

3We shall omit field indices in functional derivatives ofΓ for notational simplicity.
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To proceed, let us derive the Nielsen identity forΓT
AA. To that aim, we act on the Slavnov-Taylor identities

(3.23) with the test operator
δ3

δχδAa
µ(x)δAb

ν(y)
(4.7)

and set all fields, sources and the parameterχ to zero. Taking then the Fourier transform, making use of
the ghost number conservation, Lorentz covariance, color invariance, and multiplying everything by the
transverse projectorPµν(p), one gets

∂ ΓT
Aa

µAb
ν
(p2)

∂α
=−ΓT

Ab
νAc

σ
(p2) ΓT

χΩc
σAa

µ
(p2)−ΓT

Aa
µAc

σ
(p2) ΓT

χΩc
σAb

ν
(p2) , (4.8)

whereΓT
Aa

µAb
ν
(p2) is the transverse part of the 1PI two-point gluon correlation function, i.e.

ΓT
Aa

µAb
ν
(p2) = Pµτ〈Aa

τ(p)A
b
ν(−p)〉1PI =

(

δµτ −
pµpτ

p2

)

〈Aa
τ(p)A

b
ν(−p)〉1PI , (4.9)

and whereΓT
χΩc

σAa
µ
(p2) stands for the Fourier transform of the transverse component of the insertion

δ3Γ
δχδAa

µ(x)δΩc
σ(y)

∣
∣
∣
∣
∣

fields= sources= χ = 0

. (4.10)

Setting now
ΓT

χΩc
σAa

µ
(p2) = δcaPσµ(p) ΓT

χΩA(p
2) , (4.11)

eq. (4.8) becomes
∂ ΓT

AA(p
2)

∂α
=−2ΓT

AA(p
2)ΓT

χΩA(p
2) , (4.12)

expressing the Nielsen identity obeyed byΓT
AA(p

2). Likewise, we can derive the Nielsen identity for the
mixed 1PI form factorΓT

Aϕ, eq. (4.4), i.e.

∂ ΓT
Aϕ(p

2)

∂α
=−ΓT

AA(p
2)ΓT

χΩϕ(p
2)−ΓT

Aϕ(p
2)ΓT

χΩA(p
2) , (4.13)

whereΓT
χΩϕ stands for the form factor

ΓT
χΩd

σϕbc
ν
(p2) = f dbcPσν(p) ΓT

χΩϕ(p
2) , (4.14)

andΓT
χΩd

σϕbc
ν
(p2) is the Fourier transform of the transverse component of the insertion

δ3Γ
δχδϕbc

ν (x)δΩd
σ(y)

∣
∣
∣
∣
∣

fields= sources= χ = 0

. (4.15)

We can now derive the Nielsen identity for the gluon propagator GT
AA(k

2). Taking the derivative of
eq. (4.6) with respect to the gauge parameterα and making use of eq. (4.12), it turns out that

∂
∂α

1

GT
AA

=−2
ΓT

χΩA

GT
AA

− 1

GT
AA

∂
∂α

log(−GT
AAΓT

AA) , (4.16)

expressing the Nielsen identity for the transverse component of the gluon propagatorGT
AA.
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Unfortunately, due to the presence of the term log(−GT
AAΓT

AA), it is yet unclear how eq. (4.16) would
imply that the poles ofGT

AA areα-independent. We remind in fact that, in the present case,GT
AAΓT

AA 6=
−1, due to the existence of mixed propagators. A more complicated Nielsen identity involving the
determinant of the 1PI two-point function is needed to achieve the desired result,a topic which will be
worked out in great detail in the next subsection. Before delving into those details, let us first spend a
few words on the quantityΓT

χΩA appearing in eqs. (4.12) and (4.16). In particular, lookingat expression

(4.12), one is led to state that the zeroes ofΓT
AA(p

2) should be independent of the parameterα, due to
the presence ofΓT

AA(p
2) itself in the right hand side of eq. (4.12). Evidently, this is true provided the

factorΓT
χΩA is not too singular at the zero ofΓT

AA(p
2), so as to compensate the zero itself. This is a not so

evident question for which, to our knowledge, no complete answer based on Ward identities is available
so far4. It is therefore useful to outline some argument in favour ofthe absence of unwanted singularities
in the quantityΓT

χΩA. As shown in Appendix C, the quantityΓT
χΩA can be rewritten as

ΓT
χΩA(p

2) =− i
2

ΓT
AA(p

2)GT
(Dc)A(p

2)− iNΓT
Aϕ(p

2)GT
(Dc)ϕ(p

2) , (4.17)

whereGT
(Dc)A andGT

(Dc)ϕ are the form factors of the Fourier transform of the connected two-point Green

functions 〈(∫ d4t c̄d(t)bd(t))Dae
µ ce(x)Ac

σ(x1)〉T
c and 〈(∫ d4t c̄d(t)bd(t))(Dae

µ ce)(x)ϕck
σ (x1)〉T

c . Thus, the
Nielsen identity (4.12) becomes

∂ ΓT
AA

∂α
= iΓT

AA

(

ΓT
AAGT

(Dc)A+2NΓT
AϕGT

(Dc)ϕ

)

, (4.18)

which turns out to be quite useful for an order by order Feynman diagrammatic analysis. Let us first
focus on the termΓT

AAΓT
AAGT

(Dc)A, which is already present in standard Yang-Mills theory [43]. In order

to have a compensation at the zero ofΓT
AA, the connected Green functionGT

(Dc)A should develop a double
pole, which seems unlikely to happen, at least in an order by order Feynman diagram expansion. This
reasoning is also supported by explicit one loop calculations in ordinary Yang-Mills theory [43], where
the quantityGT

(Dc)A indeed does not develop a double pole. A similar argument applies as well to the

second termΓT
AAΓT

AϕGT
(Dc)ϕ. In summary, in the following we shall assume that the quantity ΓT

χΩA is

not too singular to compensate the zeroes ofΓT
AA. Though, an explicit proof valid to all orders of this

statement remains to be worked out, even for standard perturbative QCD.

Before ending this section, it is worth emphasizing that theauxiliary fields(ϕ̄ab
µ ,ϕab

µ , ω̄ab
µ ,ωab

µ ) of the
Gribov-Zwanziger action,SGZ, eq. (3.5), develop their own dynamics, giving rise to additional non-
perturbative effects encoded in the formation of BRST invariant dimension two condensates〈Ah,a

µ Ah,a
µ 〉

and〈ϕ̄ab
µ ϕab

µ − ω̄ab
µ ωab

µ 〉. As shown in [48, 49, 50, 52], taking into account the existence of the aforemen-
tioned dimension two condensates, leads to a refinement of the Gribov-Zwanziger theory, whose action
is given by

SRGZ= SGZ+
m2

2

∫
d4x Ah,a

µ Ah,a
µ −µ2

∫
d4x
(

ϕ̄ab
µ ϕab

µ − ω̄ab
µ ωab

µ

)

, (4.19)

whereSGZ is the Gribov-Zwanziger action of eq. (3.5) and where, as much as the Gribov parameterγ2,
the parameters(m2,µ2), corresponding to the condensates〈Ah,a

µ Ah,a
µ 〉 and〈ϕ̄ab

µ ϕab
µ − ω̄ab

µ ωab
µ 〉, respectively

, are determined in a self-consistent way by suitable gap equations [50]. Accordingly, the starting action
S, eq. (3.1), gets modified into its refined version

SR = SYM+SFP+SRGZ+Sτ , (4.20)

4We were unable to understand the simple argument provided in[47, Sect. 4].
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which gives rise to the following tree-level gluon propagator [1, 2, 28]

〈Aa
µ(k)A

b
ν(−k)〉tree level= δab k2+µ2

(k2+m2)(k2+µ2)+2g2Nγ4

(

δµν −
kµkν

k2

)

+
α
k2

kµkν

k2 . (4.21)

One observes that the transverse component of expression (4.21) is suppressed in the infrared region,
attaining a non-vanishing value atk= 0, while the longitudinal component still coincides with the usual
perturbative expression of the linear covariant gauges. Remarkably, expression (4.21) is in good qual-
itative agreement with the most recent lattice data on the two-point gluon correlation functions, see
[35, 36, 37].

The BRST invariance and the associated Slavnov-Taylor identities generalize straightforwardly to the
refined actionSR, eq. (4.20). In particular, the Nielsen identity (4.16) also holds in the refined case.

4.1 Nielsen identities for the determinant of the1PI propagator matrix

It is possible to provide a unifying description of theα-dependence of the poles of the mixed propagators.
We depart again from the action in eq. (3.17) and set

{
ϕbc

µ +ϕbc
µ = Ubc

µ

ϕbc
µ −ϕbc

µ = Vbc
µ .

(4.22)

Then it is straightforward to check that in the action (3.17), we can replace

−ϕ̄ac
µ M ab(Ah)ϕbc

µ +gγ2 f abc(Ah)a
µ(ϕ

bc
µ + ϕ̄bc

µ )

→ −Uac
µ M ab(Ah)Ubc

µ −Vac
µ M ab(Ah)Vbc

µ +gγ2 f abc(Ah)a
µU

bc
µ (4.23)

as the residual terms in. . .∂Ah can be reabsorbed by a harmless shift of the fieldτ.

For the rest of this subsection, we can ignore the fieldsVab
µ as these decouple from the theory. In fact they

do not mix with the gluon field and can be integrated out exactly together with part of the(ω, ω̄)-ghosts.

Next, we shall decomposeUbc
µ into its color symmetric and antisymmetric components, motivated by the

presence of the antisymmetric tensorf abc in the tree level mixing between the fieldsUbc
µ and(Ah)a

µ. In
practice, we set

Ubc
µ = U [bc]

µ +U (bc)
µ , (4.24)

with

U (bc)
µ =

1
2

(

Ubc
µ +Ucb

µ ,
)

U [bc]
µ =

1
2

(

Ubc
µ −Ucb

µ

)

. (4.25)

Clearly, (Ah)a
µ mixes only withU [bc]

µ . At tree level, we haveM ab(Ah) → −∂2δab. As a consequence,
there is no apparent mixing between the symmetric and antisymmetric sector. Including interactions,
the ∂µ

[
f abc(Ah)c

µ•
]

term in M ab(Ah) couples the symmetric sector(bc) with the antisymmetric one
[bc]. Nonetheless, in what follows we show that one can still exclude that beyond the tree level mixed

propagators as〈U [ab]
µ U (bc)

ν 〉p or 〈Aa
µU

(cd)
ν 〉

p
would be nonvanishing. Only〈Aa

µU
[bc]
ν 〉

p
is relevant.
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• 〈Aa
µU

(bc)
ν 〉

p
should, given the symmetry inbc, be proportional to the completely symmetric tensor

dabc, as the only available independent invariant rank 3SU(N) tensors aref abc anddabc. Though,
given that our theory does not contain vertices indabc, it can never emerge from loop corrections5

and as such,〈Aa
µU

(bc)
ν 〉

p
≡ 0 based on global color symmetry.

• Global color symmetry can also be invoked to prove that〈U [ab]
µ U (cd)

ν 〉p ≡ 0. Indeed, given the

symmetry properties of〈U [ab]
µ U (cd)

ν 〉p, it must be proportional to an invariant rank 4SU(N) tensor

T abcd which is antisymmetric inab and symmetric incd. As discussed in [53], there can only be
found 8 independent rank 4 tensors inSU(N). Out of these, only the set

℧= {δabδcd,δacδbd,δadδbc, f acef bde, f abef cde} , (4.26)

is relevant in our case, since the other possibilities will either contain the absentdabc tensor, or
be completely symmetric inabcd (see also [54]). A priori, a potential candidate tensor might be
T abcd= Tr

(
[ta, tb]{tb, tc}

)
, but upon closer inspection,T abcd ∝ f abedcde and, as such, it can again

be excluded due to the absence ofdabc tensor in the theory. To close the argument, one can check
that upon proper (anti-)symmetrization, no tensorT abcd can be formed with elements of℧.

Thus, having excluded exactly the mixing withU (bc), we can forget about the symmetric sector and focus

on the antisymmetric sector. We can further decomposeU [ab]
µ as follows,

U [ab]
µ =

1
N

f abp f pmnU [mn]
µ

︸ ︷︷ ︸

≡ f abpU p
µ

+U [ab]
µ − 1

N
f abp f pmnU [mn]

µ
︸ ︷︷ ︸

≡S[ab]
µ

. (4.27)

We notice thatf abcS[ab]
µ = 0 by using f abcf dbc = Nδad. SinceU p

µ = 1
N f pmnU [mn]

µ , the relevant piece of
eq. (4.23) simplifies to

∫
d4x

(
N
2

Ua
µ∂2Ua

µ +Ngγ2Aa
µPµνU

a
ν

)

. (4.28)

Evidently, there will be mixed(U,A) propagators. Thanks to this last decomposition, the color structure
of the propagator in the(U,A) sector is drastically simplified, as the only available tensor is nowδab.

Thanks to the orthogonality off abc and S[bc]
µ , we also get〈Aa

µS[bc]
µ 〉

p
≡ 0 since the latter can be only

proportional tof abc.

We are now ready to face the derivation of the Nielsen identities. We reconsider the Slavnov-Taylor
identity (3.24). After the previous field decomposition, wecan derive a similar matrix relation as in
eq. (4.1), viz.

ΓAa
µAc

σ(k)GAc
σAb

ν
(−k)+ΓAa

µbc(k)GbcAb
ν
(−k)+ΓAa

µξc(k)GξcAb
ν
(−k)+ΓAa

µτc(k)GτcAb
ν
(−k)

+ΓAa
µU

c
σ(k)GUc

σAb
ν
(−k) =−δabδµν . (4.29)

As before, without loss of information, we can project the foregoing expression on the transverse sub-
space, yielding6

ΓT
Aa

µAc
σ
GT

Ac
σAb

ν
+ΓT

Aa
µU

c
σ
GT

Uc
σAb

ν
=−δabPµν . (4.30)

5See [51, Sect. 12.4] for a discussion about the tensordabc and when it can (not) appear.
6To avoid notational clutter, we will refrain from writing the momentum dependence from now on.
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From global color invariance and transversality of the ensuing propagators, we get7

{

ΓT
Aa

µAc
σ

= δacPµσΓT
AA,

ΓT
Aa

µU
c
σ

= δacPµσΓT
AU (= ΓT

Ua
µ Ac

σ
) ,

(4.31)

so that eq. (4.30) collapses to

ΓT
AAGT

AA+ΓT
AUGT

UA = −1. (4.32)

Likewise, we can derive that

ΓT
AAGT

AU +ΓT
AUGT

UU = 0, (4.33)

ΓT
UAGT

AA+ΓT
UUGT

UA = 0, (4.34)

ΓT
UAGT

AU +ΓT
UUGT

UU = −1. (4.35)

Said otherwise, up to a sign, the matrices

ΓT =

(
ΓT

AA ΓT
AU

ΓT
AU ΓT

UU

)

and GT =

(
GT

AA GT
AU

GT
AU GT

UU

)

(4.36)

are each other’s inverse,

ΓTGT =−1. (4.37)

Ultimately, we are interested in the poles ofGT
AA. From eq. (4.37), it is clear that the matrixGT , and thus

its elements, can only develop poles due to zeroes in detΓT . We do not expect poles atp2 > 0 in the
elements of the 2×2 matrixΓT , as these would need to correspond to zeroes in one of the propagators
at p2 > 0. Let us present a justification of this. From eq. (4.37), we immediately derive

ΓT
AA =

GT
UU

(GT
AU)

2−GT
AAGT

UU
, ΓT

AU =− GT
AU

(GT
AU)

2−GT
AAGT

UU
, ΓT

UU =
GT

AA

(GT
AU)

2−GT
AAGT

UU
. (4.38)

Here, we have taken into account that the matrices are actually symmetric in(A,U).

Assuming thatm2
∗ is a simple pole ofGT

AA, i.e.GT
AA(m

2
∗) = ∞, we can discriminate between 4 possibilities:

• GT
AU(m

2
∗) < ∞ and GT

UU(m
2
∗) < ∞: it follows that ΓT

AA(m
2
∗) = ΓT

AU(m
2
∗) = 0, while ΓT

UU(m
2
∗) =

1
GT

UU (m
2∗)
< ∞ to comply with eq. (4.35).

• GT
AU(m

2
∗) = ∞ andGT

UU(m
2
∗) < ∞: in this case, due to the presence of(GT

AU(m
2
∗))

2 in expressions
(4.38), we getΓT

AA(m
2
∗) = ΓT

AU(m
2
∗) = ΓT

UU(m
2
∗) = 0.

• GT
AU(m

2
∗) < ∞ and GT

UU(m
2
∗) = ∞: the relations (4.38) again allow to deduce thatΓT

AA(m
2
∗) =

ΓT
AU(m

2
∗) = ΓT

UU(m
2
∗) = 0.

• GT
AU(m

2
∗) = ∞ andGT

UU(m
2
∗) = ∞: again, we getΓT

AA(m
2
∗) = ΓT

AU(m
2
∗) = ΓT

UU(m
2
∗) = 0.

7At this point, the importance of having reduced the mixing terms to the one betweenAa
µ andUa

µ can again be appreciated,

otherwise we would have had to parametrize (unrestricted bysymmetry) rank 4 propagators as〈ϕab
µ ϕ̄cd

ν 〉.
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So, in all cases the matrix elements ofΓT are nonsingular at the polem2
∗ of GT

AA.

The α-dependence of the zeroes of the determinant can now be controlled by a Nielsen identity. In
general, we have

∂
∂α

detΓT = detΓTTr

(

(ΓT)−1 ∂
∂α

ΓT
)

= −detΓTTr

(

GT ∂
∂α

ΓT
)

. (4.39)

The elements of∂∂α ΓT correspond to analogous relations as (4.12)-(4.13). Next to the identity (4.12), we
also need

∂ΓT
AU

∂α
= −ΓT

AAΓT
χΩU −ΓT

AUΓT
χΩA , (4.40)

∂ΓT
UU

∂α
= −2ΓT

AUΓT
χΩU . (4.41)

The derivation of the latter equalities goes as usual by acting with the appropriate test operator on the
Slavnov-Taylor identity, with similar decompositions as in eq. (4.11) for the form factors.

We are now armed to compute the Tr appearing in (4.39), namely

Tr

(

GT ∂
∂α

ΓT
)

= GT
AA

∂ΓT
AA

∂α
+2GT

AU
∂ΓT

AU

∂α
+GT

UU
∂ΓUU

∂α
= −2GT

AAΓT
AAΓT

χΩA+2GT
AU(−ΓT

AAΓT
χΩU −ΓT

AUΓT
χΩA)−2GT

UUΓT
AUΓT

χΩU

= −2ΓT
χΩA (4.42)

upon using eqs. (4.32)-(4.33).

Eventually, we thus obtain

∂
∂α

detΓT = 2(detΓT)ΓT
χΩA . (4.43)

The fair simplicity of this final expression can be understood from the gauge invariance of the propagator

GT
UU . We recall thatUa

µ is a BRST invariant field. As such, it must hold that∂GT
UU

∂α = 0. From

GT
UU =− ΓT

AA

detΓT ⇔ GT
UU detΓT = −ΓT

AA, (4.44)

we get

GT
UU

∂
∂α

detΓT = −∂ΓT
AA

∂α
, (4.45)

or

∂
∂α

detΓT = − 1
GT

UU

∂ΓAA

∂α
=

1
ΓT

AA

detΓT ∂ΓAA
T

∂α
= 2(detΓT)ΓT

χΩA , (4.46)

which implies the desired result that the zeroes of(detΓT) areα-independent.

It is interesting to mention that the zeroes of the 1PI matrix ΓT will in general produce poles in all
propagatorsGT

AA, GT
AU andGT

UU . As the poles of the latter are gauge invariant per construction, this
observation already strongly suggests that the zeroes ofΓT

AA will also be gauge invariant, even without
using the Nielsen identities. However, we were unable to rule out on general grounds cancellations of
possible gauge variant zeroes of detΓT with compensating zeroes in the elements ofΓT . This necessitated
the lengthy Nielsen analysis just presented.
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4.2 Renormalization group invariance of the pole masses

Another well-known interesting property, next to the gaugeparameter independence, is the renormaliza-
tion group invariance of the pole mass(es). We first point outthat detΓT will also obey the renormaliza-
tion group equation ifΓT does as

µ
d
dµ

detΓT = −detΓTTr

(

GTµ
d
dµ

ΓT
)

. (4.47)

The pole masses were identified as the zeroes of detΓ, so working around such zerom2
∗, with detΓT =

(p2+m2
∗)R(p

2), we immediately get from the foregoing equation that

0= µ
d
dµ

detΓT = R(p2)µ
dm2

∗
dµ

, (4.48)

hence

µ
dm2

∗
dµ

= 0. (4.49)

4.3 Removing the Gribov horizon

Formally, the Gribov horizon can be removed from the theory by setting γ2 = 0, in which case the
auxiliary fields can be integrated out, yielding a unity. When γ2 = 0, the action (4.19) reduces to the
BRST invariant massive model studied recently in [29], namely

Sm = SYM+SFP+Sτ +
m2

2

∫
d4x Ah,a

µ Ah,a
µ . (4.50)

This model can be regarded as the generalization to the linear covariant gauges of the effective massive
model introduced in the Landau gauge in [55, 56, 57]. Therefore, for γ → 0, one is back to the case of
standard Yang-Mills theory, albeit supplemented with a mass term, leading to

ΓT(γ2=0)
AA GT(γ2=0)

AA =−1 , (4.51)

so that eq. (4.16) becomes

∂
∂α

1

GT(γ2=0)
AA

=−2
ΓT(γ2=0)

χΩA

GT(γ2=0)
AA

, (4.52)

which is nothing but the usual Nielsen identity of the standard Yang-Mills theory [43].

Let nowm2
∗ denote the pole of the transverse part of the gluon propagator, i.e.

1

GT(γ2=0)
AA (p2)

∣
∣
∣
∣
∣
p2=−m2∗

= 0 . (4.53)

Thus, the Nielsen identity (4.52) becomes
(

∂
∂α

1

GT(γ2=0)
AA

)

p2=−m2∗

= 0 , (4.54)

implying that the pole massm2
∗ of the transverse component of the gluon propagatorGT(γ2=0)

AA is indepen-
dent of the gauge parameterα [43]. The pole mass in the Landau gauge version of eq. (4.50) was studied
in [58, 59].
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4.4 Nielsen identities and Landau-Khalatnikov-Fradkin transformations

As we have just shown for the GZ case, and as it is well known in general, Nielsen identities are a
direct consequence of the underlying BRST invariance of thetheory and they allow to control the gauge
parameter dependence of gauge variant quantities.

There is another class of relations, commonly known as the Landau-Khalatnikov-Fradkin (LKF) trans-
formations, that dictate how to connectn-point functions in different gauges [60, 61]. At the level
of practical usage, the LKF transformation are usually restricted to the QED fermion propagator, see
[62, 63, 64] for useful references. Nonetheless, also for the QCD case, some progress has recently been
made for the quark propagator up to a certain order in perturbation theory, see [65].

In [66], it was observed that, at least for the QED case, the LKF transformations can be derived from
BRST invariance as well, by introducing an auxiliary Stueckelberg field. This strengthens our intuition
that Nielsen identities and LKF transformations should be related in some way, as at the end, both are
consequences of BRST invariance. Schematically, a Nielsenidentity for a connected two-point function
in the absence of mixing looks like

∂
∂α

Gφφ = GφφM

whereM corresponds to the analogue of the composite operator correlation functionΓχΩφ. Then we can
write

∂
∂α

lnGφφ = M ,

which can be solved for by
G(α)

φφ = G(α=0)
φφ e

∫ α
0 dα′M(α′) .

This is an LKF transformation, in the sense that the two-point function atα is given by transforming the
two-point function atα = 0 (Landau gauge) with some suitable form factore

∫ α
0 M.

Let us discuss this here in some more detail for the Abelian case, i.e. QED, and the photon propagator.
For QED, we do not even need to worry about the Gribov problem.We thus consider the Abelian limit
of the extended gauge fixing (3.16) and add the Dirac action for the fermions, so that

SQED =

∫
d4x
(

F2
µν + ib∂µAµ+

α
2

b2− i
χ
2

c̄b− c̄∂2c+ ψ̄ /Dψ
)

.

Considering next the Abelian limit of the STI for the generator Zc of connected Green functions,
eq. (3.30) and acting on it with the appropriate test operator, we get for the Nielsen identity of the
photon propagator

∂
∂α

〈AµAν〉k = kµZχcAν(k
2) ,

where

ZχcAν(k
2) =

〈∫
(c̄b)cAν

〉

k

is the Abelian analogue ofΓχΩA, but now immediately at the connected level.

In the Abelian case, this form factorZχcAν(k
2) can be computed in a closed form, since ¯c, c andb are free

fields. Indeed, as〈c̄c〉= 1
k2 and〈bAν〉= kν

k2 , it follows that

∂
∂α

〈AµAν〉k =
kµkν

k4 . (4.55)
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Indeed, there is only the photon-fermion vertex, so
〈∫

(c̄b)cAν

〉

k
=

∞

∑
n=0

1
n!

〈∫
(c̄b)cAν

[∫
(ψ̄/Aψ)

]n〉

.

If b is contracted withAν, we obtain exactly eq. (4.55) since we then get a factorisation into〈∫ (c̄b)c〉 and
∑∞

n=0

〈∫
(ψ̄/Aψ)n

〉
, but the latter expression equals 1 since it matches to the (photon) propagator× self-

energy. If we contractb with anA from a vertex, we trivially get zero since this amounts to a contraction
between a momentum and a (conserved) Dirac current.

The final resolution of the photon Nielsen identity, eq. (4.55), is nothing else but the photon LKF trans-
formation. The solution to the eq. (4.55) is, after integration, exactly given by the LKF relation

〈AµAν〉(α)k = 〈AµAν〉(α=0)
k +α

kµkν

k4 .

Of course, in the non-Abelian case, the situation gets more complicated, since the r.h.s. of the gluon
Nielsen identity depends onΓχΩA, which cannot be evaluated in an exact form anymore. This also means
that the corresponding LKF relation, obtainable by integrating the Nielsen identity, can no longer be
written in a closed form and one needs to resort to an approximation. This is exactly what is done, to a
few orders in perturbation theory, in [65] for the quark propagator. We did not consider fermions in our
current paper, but needless to say also for those degrees of freedom, a Nielsen identity can be derived.
For the standard perturbative result, see for example [43].The r.h.s. of the fermion Nielsen identity will
depend onΓχK̄ψ andΓχKψ̄ with K̄ andK the sources coupled to the BRST variations ofψ andψ̄. Also
these can no longer be evaluated in closed form in the QCD case, the QED case was studied in depth
in [63, 64]. We will report on the non-Abelian generalization of the LKF transformations and the link
with the Nielsen identities for both gluon and fermionn-point functions in more detail elsewhere, with
attention for the manifest renormalizability of the construction. Let us end this subsection by mentioning
that, in principle, one can also derive LKF transformationsfor the mixed propagators in the GZ case by
integrating the corresponding Nielsen identities, which gives a way to “move” from the Landau gauge
results to those of a general linear covariant gauge.

5 The gauge invariant correlation function 〈Ah
µ(k)A

h
ν(−k)〉

Having constructed the gauge invariant configurationAh
µ, we are naturally led to introduce the two-point

correlation function

〈Ah,a
µ (k)Ah,b

ν (−k)〉= δab
(

δµν −
kµkν

k2

)

D(k2) , (5.1)

which, as a consequence of the transversality ofAh
µ, can be parametrized in terms of a single form factor

D(k2). Due to the gauge invariance ofAh
µ, the correlation function (5.1) is BRST invariant. As such,it

has the pleasant property of being independent of the gauge parameterα [2], namely

∂D(k2)

∂α
= 0 . (5.2)

Due to its BRST invariant andα-independent nature, the two-point correlation function (5.1) can be
employed to investigate non-perturbative aspects of the theory. A first important property encoded in the
expression (5.1) follows from the following identity

〈Ah,a
µ (x)Ah,b

ν (y)〉 = 〈Ah,a
µ (x)Ah,b

ν (y)〉α=0 = 〈Ah,a
µ (x)Ah,b

ν (y)〉SLandau , (5.3)
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whereSLandauis the action (3.1) in the Landau gauge, i.e.α = 0, ∂µAa
µ = 0, namely

SLandau= SYM+SFPα=0 +SGZ , (5.4)

with
SFPα=0 =

∫
d4x
(

iba ∂µAa
µ+ c̄a∂µDab

µ (A)cb
)

. (5.5)

Let us give a closer look at the correlation function〈Ah,a
µ (x)Ah,b

ν (y)〉SLandau, i.e.

〈Ah,a
µ (x)Ah,b

ν (y)〉SLandau=

∫
[DΦ]Ah,a

µ (x)Ah,b
ν (y)e−SLandau∫

[DΦ]e−SLandau
, (5.6)

where[DΦ] is a short hand notation for integration over all fields

[DΦ] = DAµDξDϕµDϕ̄µDωµDω̄µDbDcDc̄Dτ . (5.7)

Integrating out the fields(τ,b,c, c̄), we get

〈Ah,a
µ (x)Ah,b

ν (y)〉SLandau=

∫
[DΦ̃]δ(∂µAh

µ)δ(∂µAµ)det(−∂ ·D)Ah,a
µ (x)Ah,b

ν (y)e−(SYM+SGZ)

∫
[DΦ̃]δ(∂µAh

µ)δ(∂µAµ)det(−∂ ·D)e−(SYM+SGZ)
. (5.8)

Employing eqs. (A.20), (A.21) of Appendix A, the equation∂µAh
µ = 0 can be solved iteratively forξa

yielding

ξ =
1
∂2 ∂µAµ+ i

g
∂2

[

∂A,
∂A
∂2

]

+ i
g
∂2

[

Aµ,∂µ
∂A
∂2

]

+
i
2

g
∂2

[
∂A
∂2 ,∂A

]

+O(A3) , (5.9)

so that we can eventually integrate overξa, obtaining

〈Ah,a
µ (x)Ah,b

ν (y)〉〉SLandau=

∫
[DΦ̃]δ(∂µAµ)det(−∂ ·D)Ah,a

µ (x)Ah,b
ν (y)e−(SY M+SGZ)∫

[DΦ̃]δ(∂µAµ)det(−∂ ·D)e−(SYM+SGZ)
, (5.10)

whereAh
µ is now given by, see eq. (A.22) of Appendix A,

Ah
µ = Aµ−

1
∂2∂µ∂A− ig

∂µ

∂2

[

Aν,∂ν
∂A
∂2

]

− i
g
2

∂µ

∂2

[

∂A,
1
∂2 ∂A

]

+ ig

[

Aµ,
1
∂2∂A

]

+ i
g
2

[
1
∂2∂A,

∂µ

∂2∂A

]

+O(A3) . (5.11)

An important remark is in order here. When evaluatingδ(∂µAh
µ) by means of the foregoing expression,

we tacitly assumed that this is the unique solution making the argument of theδ-function zero. Exactly
because the actionSGZ implements the conditionM ab(Ah) > 0, we are ensured that there are no other
solutions connected via infinitesimal gauge transformations to theAh

µ constructed via (5.11), as this would
requireM ab(Ah) to have zero modes. This is the best one can achieve in the continuum, as excluding
other equivalent field configurations would boil down to knowing how to restrict in Landau gauge to the
fundamental modular region, the region of absolute, ratherthan local, minima of the functionalfA[u]
[4, 6, 7], see Appendix A. Unlike the case of the Gribov regionΩ, eq. (1.1), a local and renormalizable
action implementing the restriction to the fundamental modular region is, so far, not at our disposal. In
[67] an argument was given why averages over the Gribov region would coincide with those over the
fundamental modular region, but this is an unsettled issue,see [68].
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Due to the presence in eq. (5.10) of the delta functionδ(∂µAµ), all terms containing a divergence∂A
vanish, namely

〈Ah,a
µ (x)Ah,b

ν (y)〉SLandau =

∫
[DΦ̃]δ(∂µAµ)det(−∂ ·D)Ah,a

µ (x)Ah,b
ν (y)e−(SY M+SGZ(A))∫

[DΦ̃]δ(∂µAµ)det(−∂ ·D)e−(SYM+SGZ(A))

=

∫
[DΦ̃]δ(∂µAµ)det(−∂ ·D)Aa

µ(x)A
b
ν(y)e−(SY M+SGZ(A))

∫
[DΦ̃]δ(∂µAµ)det(−∂ ·D)e−(SYM+SGZ(A))

= 〈Aa
µ(x)A

b
ν(y)〉S̃, (5.12)

whereS̃stands for the standard Gribov-Zwanziger action in the Landau gauge, namely

S̃ = SYM+

∫
d4x
(

iba ∂µAa
µ+ c̄a∂µDab

µ (A)cb
)

+

∫
d4x

(

−ϕ̄ac
ν M ab(A)ϕbc

ν + ω̄ac
ν M ab(A)ωbc

ν + γ2g fabc(A)a
µ(ϕ

bc
µ + ϕ̄bc

µ )
)

. (5.13)

Finally, we end up with the important result

〈Ah,a
µ (x)Ah,b

ν (y)〉 = 〈Aa
µ(x)A

b
ν(y)〉S̃ , (5.14)

which gives us a practical way of computing the correlator〈Ah,a
µ (x)Ah,b

ν (y)〉. More precisely, the BRST in-
variant correlation function〈Ah,a

µ (x)Ah,b
ν (y)〉 is obtained by evaluating the gluon propagator〈Aa

µ(x)A
b
ν(y)〉

in the Landau gauge with the standard Gribov-Zwanziger action S̃, eq. (5.13).

Furthermore, from eq. (5.14) and from the previous result onthe independence fromα of the poles of
the transverse part of the gluon propagator〈Aa

µ(k)A
b
ν(−k)〉T

S = Pµτ(k)〈Aa
τ(k)A

b
ν(−k)〉S , it immediately

follows that the poles of〈Ah,a
µ (k)Ah,b

ν (−k)〉 are precisely those of〈Aa
τ(k)A

b
ν(−k)〉T

S, providing thus a
BRST invariant andα-independent way of characterizing the nature of the excitations in the gluon sector
within the class of the renormalizable linear covariant gauges.

Another useful quantity which can be introduced by means of expression (5.1) is the so called temporal
Schwinger correlatorC (t), defined fort ≥ 0 as

C (t) =
1
2π

∫ ∞

−∞
dp e−iptD(p2) , (5.15)

which is per construction manifestly BRST invariant andα-independent. It is known that the violation
of the positivity of the temporal correlator (5.15) is directly related to the impossibility of giving a
physical particle interpretation to the BRST invariant correlation function (5.1) via a Källén-Lehmann
spectral representation. Suppose in fact that the form factor D(k2) admits a Källén-Lehmann spectral
representation, namely

D(k2) =

∫ ∞

τ0

dτ
ρ(τ)

τ+k2 , (5.16)

whereρ(τ)≥ 0 denotes the spectral density andτ0 the threshold. For the temporal correlator (5.15), one
gets

C (t) =
1
2

∫ ∞

τ0

dτ
e−t

√
τ

√
τ

ρ(τ) . (5.17)

Therefore, ifC (t)< 0 for somet ≥ 0, then the spectral densityρ(τ) cannot be positive everywhere. This
implies that the correlation function (5.1) cannot be givena particle interpretation in terms of physical
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excitations belonging to the spectrum of the theory, a situation which is expected to be physically realized
in the confining regime of the theory. For some more discussion aboutC (t), see for instance [69, 70].

It is worth underlining that, actually, the violation of thepositivity of the temporal correlator is taken as
a strong evidence for gluon confinement, from both analytical and numerical lattice studies of the gluon
propagator. We see therefore that the introduction of the correlation function (5.1) enables us to attach
a BRST invariant meaning to the positivity violation, through the BRST invariant temporal correlator
(5.15). Of course, from eq. (5.14), it follows

C (t)S= C (t)α=0 = C (t)S̃ , (5.18)

giving us a way of checking the positivity violation. In practice, eq. (5.18) tells us that in order to check
the positivity violation of the temporal correlatorC (t)S in the linear covariant gauges, it suffices to look
at the temporal correlatorC (t)S̃ in the Landau gauge, evaluated with the standard Gribov-Zwanziger
actionS̃.

It can be easily checked that positivity is violated for the original Gribov propagator (3.36). A contour
integration argument gives

C (t) =
e−

λ√
2
t

2λ
cos

(
π
4
+

λ√
2

t

)

, (5.19)

where we have setλ4 = 2g2Nγ4. Evidently, the r.h.s. of (5.19) is not positive for allt. This was observed
before in [14].

Using the same method, a closed expression forC (t) can also be obtained for the refined propagator
(4.21), but the final expression is not very instructive to read off the positivity violation with the naked
eye. Though, this can be easily checked numerically using lattice input for the dynamical mass scales
obtained from fitting expression (4.21), upon a suitable global rescaling related to a choice of MOM
renormalization scale, see [71, 72, 73, 74]. The positivityviolation can also be directly checked from the
lattice viewpoint, either viaC (t) [17, 24] or directly from the spectral function [23].

6 Application: evaluation of the temporal correlator C (t) for SU(2) Yang-
Mills-Higgs theory

Consider the action
S= SHiggs

YM +SFP+SGZ+Sτ . (6.1)

SHiggs
YM stands for the Yang-Mills action in presence of a Higgs field in the fundamental representation

SHiggs
YM =

∫
d4x

(
1
4

Fa
µνFa

µν +
(
Di j

µ φ j)†
(

Dik
µ φk
)

+
λ
2

(
φ†φ−v2)2

)

, (6.2)

where
Di j

µ φ j = ∂µφi − ig(Ta)i j Aa
µφ j , (6.3)

is the covariant derivative with{Ta} being the generators of the gauge groupSU(N) in the fundamen-
tal representation of the gauge groupSU(N), [Ta,Tb] = i f abcTc. For simplicity, we will work in the
“freezing” limit λ → ∞.

To discuss the behaviour of the temporal correlator (5.18) we can make direct use of the results already
obtained in [75]. In particular, according to [75], the propagators of the theory in the plane(g,v) turn out
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to be characterised by a separation linea= 1/2, wherea denotes the dimensionless quantity

a=
g2v2

4µ̄2e

(

1− 32π2

3g2

) , (6.4)

whereµ̄ is the energy scale of the dimensional regularization in theMS scheme. For generality, we will
discuss the propagator and temporal correlator behaviour for all values of the parametera. However, as
discussed in [75], the analysis leading to the result (6.4) can only be trusted for very small or very large
values ofa, related to a balancing between size of the leading logs and coupling constantg2.

Following [75], we have the following regions:

• for a> 1/2, the form factorD(k2) is of the Yukawa type, i.e.

D(k2) =
1

k2+ g2v2

2

. (6.5)

The temporal correlatorC (t)S is always positive. In this region the usual Higgs mechanismtakes
place. The BRST invariant correlation function (5.1) has a clear and transparent meaning: it
describes the three polarizations of a massive gauge boson characteristic of the Higgs phase . We
notice that, for sufficiently weak couplingg2 and high values of the Higgs VEVv, the parameter
a will always be bigger than 1/2, and sufficiently big to trust the leading order analysis presented
in [75]. Moreover, as pointed out in [75], the restriction tothe Gribov region in the functional
integral is not needed.

• for 1/e< a< 1/2, the form factorD(k2) turns out to be the sum of two Yukawa terms, namely

D(k2) =
F+

k2+m2
+

− F−
k2+m2

−
, (6.6)

where

m2
+ =

1
2

(

g2v2

2
+

√

g4v4

4
− 4g2

3
ϑ

)

, m2
− =

1
2

(

g2v2

2
−
√

g4v4

4
− 4g2

3
ϑ

)

F+ =
m2
+

m2
+−m2

−
, F− =

m2
−

m2
+−m2

−
, (6.7)

and the parameterϑ is proportional to the Gribov parameterγ, being given by the gap equation
[75]

3g2

2

∫
d4q
(2π)4

1

q4+ g2v2

2 q2+ g2

3 ϑ
= 1 . (6.8)

Due to the negative nature of the residueF−, we cannot give a physical interpretation toD(k2)
in terms of excitations. Though, we underline that, due to the BRST invariant nature ofD(k2),
the two Yukawa modes corresponding to the massesm2

+ andm2
− cannot be analysed separately. In

other words, BRST invariance requires that the two modesm2
+ andm2

− belong to a unique, BRST
invariant, quantity:D(k2). Let us look thus at the temporal correlatorC (t)S in this region. A
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simple calculation gives

C (t)S =
1
π

∫ ∞

−∞
dp e−ipt

(
F+

p2+m2
+

− F−
p2+m2

−

)

=
F+

m+
e−m+t

(

1− F−
F+

m+

m−
e−(m−−m+)t

)

=
F+

m+
e−m+t

(

1− m−
m+

e−(m−−m+)t
)

(6.9)

Sincem− < m+, the quantity
(

1− m−
m+

e−(m−−m+)t
)

will become negative for sufficiently larget,

i.e.

t >
1

m+−m−
log

m+

m−
. (6.10)

Therefore, the temporal correlator (6.9) in the intermediate region 1/e< a< 1/2 cannot be given
a consistent particle interpretation. Here, the effects ofthe Gribov copies start to become relevant,
forbidding a particle interpretation of the BRST invariantcorrelator (5.1).

• finally, we have the region fora < 1/e, in which the two masses(m2
+,m

2
−) become complex

conjugate and the form factorD(k2) is of the Gribov type, displaying complex poles. Again, in
this region, the temporal correlatorC (t)S becomes negative. As usual, this can be interpreted as
the confining sector. This region is realized for sufficiently large values ofg2/small values ofv,
thereby corresponding to a strong coupling regime. For sufficiently smalla, we can again trust the
approximation made in [75].

Summarizing, we have presented evidence that, for sufficiently small or large values ofa, there
are 2 different regions, with Higgs-like or confining-like properties, which are now identified in
a BRST invariant fashion. We are, unfortunately, unable to concretely characterize the possible
phase transition between these two different sectors sincethe “critical” values ofa are beyond
validity of the used expansion. From this perspective, it would be interesting to study the behaviour
of the propagator〈AhAh〉k in a lattice setting.

As our propagator is explicitly BRST invariant, we can try tomake a connection with recent
works [76, 77, 78] which introduced a gauge invariant perturbation theory, based on the ideas of
[79, 80], see also [81]. Part of the underlying motivation isthe Fradkin-Shenker paper [82] which
contains a proof that8 no local observable can discriminate between a Higgs or confining phase.
Said otherwise, it is always possible to connect the Higgs and confining “phase” in an analytical
way. Other part of the motivation is that of constructing thephysical spectrum of the theory. For
such a goal, one should consider, as appropriate for a gauge theory, gauge invariant bound state
operators and identify their poles to get a gauge invariant description of massive gauge bosons, see
[76, 77, 78, 79, 80]. Coming back to the Fradkin-Shenker result, one might expect that the ensuing
spectrum can then “interpolate” in an analytical way between the expected Higgs and confined
behaviour of the physical degrees of freedom. The gauge invariant perturbation theory comes in
about when, after choosing a gauge with associated VEV for the Higgs field9, one can expand the
connected two-point function of the gauge invariant bound state operator in terms of a two-point

8At least for the lattice version of theSU(2) gauge-fundamental Higgs model without gauge fixing. We are unaware of any
continuum version of their results.

9Giving the Higgs a VEV is a gauge dependent operation. In the lattice formulation, the VEV automatically vanishes.
Evidently, this does not mean there can be no Higgs phenomenon, it rather means that the gauge invariant spectrum is not as
simply identified as in the gauge variant perturbative setting.
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function of the standard gauge dependent fields and higher order scattering contributions. In our
case, we can do a similar thing, i.e. we can write, in any gauge,

〈AhAh〉k = 〈AA〉T
k + 〈O(A3)〉T

k (6.11)

based on the expansion (5.10). The superscriptT still means that only the transverse sector is
considered. If the BRST invariant l.h.s. correlation function has (a fortiori gauge invariant) poles,
so should the r.h.s. have, indicating that the (gauge dependent) propagator〈AA〉T

p must also have
gauge invariant poles.

7 Conclusion

In this paper, we have exploited the recently introduced, [1, 2, 28], BRST invariant, nonperturbative gen-
eralization of the linear covariant gauges, which takes into partial account the Gribov ambiguity which
hampers the standard Faddeev-Popov gauge fixing procedure.Thanks to the (local) BRST invariance and
ensuing Slavnov-Taylor identity, we were able to derive a set of Nielsen identities for the mixed propa-
gators of this novel Gribov-Zwanziger formulation of the linear covariant gauge, which encompasses the
widely studied Landau gauge as a special case. A major resultat the level of the transverse form factor
of the connected gluon propagator is a proof, based on the Nielsen identities, of the gauge parameter
independence of its (complex conjugate) poles. As a byproduct of our analysis, we digressed to some
extent how the Landau-Khalatnikov-Fradkin transformations are related to the Nielsen identities.

In addition, we also paid attention to the connected two-point function of a transverse, BRST invariant
gluon field,Ah

µ, that enters the formulation. Despite the fact that it corresponds to an infinite series of
increasingly nonlocal composite operators, it can be handled with the tools of local quantum field theory
after the introduction of suitable auxiliary fields. Its two-point function was shown to be exactly equal to
the standard gluon propagator in the Landau gauge, and giventhe Nielsen identity proof, thereby linking
its gauge invariant poles to those of the gluon propagator inany linear covariant gauge. We then used
this BRST invariant correlator to study, in a now gauge invariant fashion, the violation of positivity in
the gluon sector. Although not a proof of confinement, this isseen by many practitioners in the field
as an effective consequence of confinement: there are no observable elementary gluon excitations in the
asymptoticS -matrix spectrum.

Of course, next to the elementary gluon degrees of freedom discussed in this paper, QCD also implies
confined, or at least unobservable, quarks and ghosts. In forthcoming work, we will extend the tools
and results of this paper to the quark and ghost sector. For the quark sector, we have in mind a BRST
invariant extension of the preliminary Landau gauge modelsdiscussed in [83, 84, 85, 86] that describe
a quark propagator with a complex conjugate pole structure,in accordance with lattice fits reported in
the literature [87, 88]. In general, a relatively simple parametrization of the quark propagator in terms
of pairs of complex conjugate, and thus unphysical, poles has been proven to be rather successful to
grasp key features of the QCD spectrum in terms of solutions of the Bethe-Salpeter equations, let us for
instance refer to [15, 16, 89, 90, 91, 92].

One might be worried about the occurrence of complex poles inrelation to unitarity, the latter at least
for the bound state spectrum of the “complex” constituents.This is an open question and certainly
deserves further study. That unitarity is not necessarily at odds with complex poles in propagators can be
appreciated from [93], where an explicit recipe, motivatedby the Lee-Wick model [94, 95] was given to
ensure unitarity (and Lorentz covariance), order by order in a Feynman diagrammatic expansion, when
pairs of complex conjugate poles are introduced into the theory. More recent applications and insights
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can be found in [96, 97]. This might be an interesting avenue to explore in relation with the complex
poles induced by the Gribov-Zwanziger quantization scheme.

In the ghost sector, the Nielsen identities and its possibleconsequences may in particular shed some
light on the ghost propagator in the linear covariant gauge that for the gauge parameterα 6= 0 has a
quite different behaviour compared to the distinctα = 0 (Landau gauge) case, at least as reported in
[28, 38, 39].

We want to stress that understanding key nonperturbative features of then-point functions of QCD for
a general class of gauges is more than just of academic interest. Thesen-point functions are the key
ingredients in constructing the QCD spectrum, see [15, 89, 90, 91, 92]. So far, such analyses have been
restricted to Landau gauge for reasons of simplicity. However, depending on the specific approaches,
a lot of modeling, in the form of Ansätze for the interactionvertices, are required. Frequently, even
the input propagators are modelled with desirable, simplifying forms (see e.g. [98] for an overview and
relevant references). As such, the true gauge invariant nature of the results becomes clouded, since the
Ansätze are usually rather specific to Landau gauge and engineered to reproduce certain features of the
experimental spectrum. A truly ab initio computation of theQCD spectrum should display a clean gauge
invariant nature, ultimately controlled by the BRST invariance when a gauge fixing is employed. Our
work, in addition to that of other approaches as those of [35,36, 37, 38, 39, 40, 41, 42] can be seen as a
first, small step towards this, as at first one needs to understand the two-point functions.

One final piece of our future effort should be dedicated to a more formal aspect of BRST invariant gauge
field theories: to what extent can the new BRST invariance of the current nonperturbative formulation of
the linear covariant gauges be used to introduce a well-defined global BRST charge acting on the Hilbert
space, and if so, is it still possible to derive a confinement criterion in the sense of ensuring the absence
of colored asymptotic states from the physical BRST state cohomology? Almost needless to say, we are
referring here to a reanalysis of the Kugo-Ojima confinementcriterion [99, 100].
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A Properties of the functional fA[u].

In this Appendix we recall some useful properties of the functional fA[u]

fA[u]≡ Tr
∫

d4xAu
µAu

µ = Tr
∫

d4x

(

u†Aµu+
i
g

u†∂µu

)(

u†Aµu+
i
g

u†∂µu

)

. (A.1)
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For a given gauge field configurationAµ, fA[u] is a functional defined on the gauge orbit ofAµ. Let A be
the space of connectionsAa

µ with finite Hilbert norm||A||, i.e.

||A||2 = Tr
∫

d4xAµAµ =
1
2

∫
d4xAa

µAa
µ <+∞ , (A.2)

and letU be the space of local gauge transformationsu such that the Hilbert norm||u†∂u|| is finite too,
namely

||u†∂u||2 = Tr
∫

d4x
(
u†∂µu

)(
u†∂µu

)
<+∞ . (A.3)

As discussed in [26, 6, 7, 8], the functionalfA[u] achieves its absolute minimum on the gauge orbit of
Aµ. This proposition means that there exists ah∈ U such that

δ fA[h] = 0 , (A.4)

δ2 fA[h] ≥ 0 , (A.5)

fA[h] ≤ fA[u] , ∀u∈ U . (A.6)

The operatorA2
min is thus given by

A2
min = min

{u}
Tr

∫
d4xAu

µAu
µ = fA[h] . (A.7)

Let us give a look at the two conditions (A.4) and (A.5). To evaluateδ fA[h] andδ2 fA[h] we set10

v= heigω = heigωaTa
, (A.8)

[

Ta,Tb
]

= i f abc Tc , Tr
(

TaTb
)

=
1
2

δab , (A.9)

whereω is an infinitesimal Hermitian matrix and we compute the linear and quadratic terms of the
expansion of the functionalfA[v] in power series ofω. Let us first obtain an expression forAv

µ

Av
µ = v†Aµv+

i
g

v†∂µv= e−igωAh
µeigω +

i
g

e−igω∂µeigω . (A.10)

To orderω2,

Av
µ = Ah

µ+ igAh
µω− g2

2
Ah

µω2− igωAh
µ+g2ωAh

µω− g2

2
ω2Ah

µ

+
i
g

(

ig∂µω− g2

2
(∂µω)ω− g2

2
ω∂µω+g2ω∂µω

)

+O(ω3) , (A.11)

so that

Av
µ = Ah

µ+ ig[Ah
µ,ω]+

g2

2
[[ω,Ah

µ],ω]−∂µω+ i
g
2
[ω,∂µω]+O(ω3) , (A.12)

A little algebra leads subsequently to

fA[v] = fA[h]+2Tr
∫

d4x
(

ω∂µAh
µ

)

−Tr
∫

d4xω∂µDµ(A
h)ω+O(ω3) , (A.13)

10The case of the gauge groupSU(N) is considered here.
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so that

δ fA[h] = 0 ⇒ ∂µAh
µ = 0 ,

δ2 fA[h] > 0 ⇒ −∂µDµ(A
h) > 0 . (A.14)

The set of field configurations fulfilling conditions (A.14),i.e. those defining relative minima of the
functional fA[u], belong to the Gribov regionΩ, with

Ω = {Aµ
∣
∣∂µAµ = 0 and−∂µDµ(A)> 0} . (A.15)

Imposing transversality via∂µAh
µ = 0, allows to solve forh= h(A) in a power series inAµ. We start from

Ah
µ = h†Aµh+

i
g

h†∂µh , (A.16)

with
h= eigφ = eigφaTa

. (A.17)

Let us expandh in powers ofφ

h= 1+ igφ− g2

2
φ2+O(φ3) . (A.18)

From eq. (A.16) we have

Ah
µ = Aµ+ ig[Aµ,φ]+g2φAµφ− g2

2
Aµφ2− g2

2
φ2Aµ−∂µφ+ i

g
2
[φ,∂µ]+O(φ3) . (A.19)

Thus, condition∂µAh
µ = 0, gives

∂2φ = ∂µA+ ig[∂µAµ,φ]+ ig[Aµ,∂µφ]+g2∂µφAµφ+g2φ∂µAµφ+g2φAµ∂µφ

− g2

2
∂µAµφ2− g2

2
Aµ∂µφφ− g2

2
Aµφ∂µφ− g2

2
∂µφφAµ−

g2

2
φ∂µφAµ−

g2

2
φ2∂µAµ

+ i
g
2
[φ,∂2φ]+O(φ3) . (A.20)

This equation can be solved iteratively forφ as a power series inAµ,

φ =
1
∂2∂µAµ+ i

g
∂2

[

∂A,
∂A
∂2

]

+ i
g
∂2

[

Aµ,∂µ
∂A
∂2

]

+
i
2

g
∂2

[
∂A
∂2 ,∂A

]

+O(A3) , (A.21)

which can be simplified to

Ah
µ = Aµ−

∂µ

∂2∂A+ ig

[

Aµ,
1
∂2 ∂A

]

+
ig
2

[
1
∂2∂A,∂µ

1
∂2∂A

]

+ ig
∂µ

∂2

[
∂ν

∂2 ∂A,Aν

]

+ i
g
2

∂µ

∂2

[
∂A
∂2 ,∂A

]

+O(A3) . (A.22)

The transverse field given in eq. (2.2) is, as expected, gaugeinvariant. Let us illustrate this under a gauge
transformation

δAµ =−∂µω+ ig[Aµ,ω] . (A.23)

Up to the orderO(g2) we get

δφν = −∂νω+ i
g
2

[
1
∂2∂A,∂νω

]

+ i
g
2

[

∂ν
1
∂2∂A,ω

]

+O(g2) . (A.24)

So,

δφν =−∂ν

(

ω− i
g
2

[
∂A
∂2 ,ω

])

+O(g2) , (A.25)

from which the gauge invariance ofAh
µ is established.
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B Gauge parameter independence of the pole mass ofGT
AA: a slightly dif-

ferent reasoning

We provide here a second proof of the independence from the gauge parameterα of the poles of the
transverse componentGT

AA of the gluon propagator. In a quantum field theory which does not have
mixed propagators of different fields, eq. (3.29) implies, essentially, that the 1PI two-point function
is the inverse of the connected two-point function. An immediate consequence of this fact is that the
poles of the connected two-point function coincide with thezeroes of the corresponding 1PI two-point
function. Therefore, in this simple case, if one is able to prove that the zero/pole of the 1PI/connected
two-point function is independent of the gauge parameterα, the independence from the gauge parameter
of the pole/zero of the connected/1PI two-point function is a direct consequence.

Nevertheless, as long as theories with mixed propagators are considered, these properties are lost and one
has to be more careful in the analysis of the gauge independence of the poles/zeroes of the connected/1PI
two-point functions. In the present case, we are dealing with the Gribov-Zwanziger action which has a
large number of fields and of non-trivial mixed propagators,see [1, 2]. However, we were able to derive
the identity (4.12) which tells us that if atp2 = −m2 the two-point functionΓT

AA(m
2) vanishes and the

insertionΓT
χΩA is not too singular, then the zerom2 is independent ofα, namely,

∂m2

∂α
= 0. (B.1)

Although theα-independence of the zero ofΓT
AA is controlled by (4.12), one could be interested on the

α-independence of the poles of the connected two-point function GT
AA. For this, let us assume that the

pole ofGT
AA is located atp2 =−m2

∗ and we split our analysis in two cases:

1. The pole ofGT
AA does not coincide with the pole ofGT

Aϕ:

In this case, we consider eq. (4.5) at the polep2 =−m2
∗, namely

ΓT
AA(m

2
∗)G

T
AA(m

2
∗)+2NΓT

Aϕ(m
2
∗)G

T
Aϕ(m

2
∗) =−1. (B.2)

By assumption,GT
AA(m

2
∗) = ∞ while GT

Aϕ(m
2
∗) < ∞. SinceΓT

AA(m
2
∗) andΓT

Aϕ(m
2
∗) are not singular

at the polep2 = −m2
∗, a property which can be shown in a way completely similar as done below

eq. (4.37), the only way the l.h.s. of eq. (B.2) could producea finite value is by settingΓT
AA(m

2
∗) =

0. This implies that the pole ofGT
AA coincides with the zero ofΓT

AA and by eq. (B.1) it isα-
independent.

2. The pole ofGT
AA is the same as the pole ofGT

Aϕ:

For this situation, we consider the following expression

ΓT
Aa

µAc
λ
GT

Ac
λϕbe

ν
(m2

∗)+ΓT
Aa

µϕcd
λ

GT
ϕcd

λ ϕbe
ν
(m2

∗)+ΓT
Aa

µϕ̄cd
λ

GT
ϕ̄cd

λ ϕbe
ν
(m2

∗) = 0, (B.3)

which is derived from eq. (3.29) by settingφi = Aa
µ, φ j = ϕbe

ν and applying the transverse projector
on Lorentz indices. To proceed with the analysis, we subdivide the argument in two cases:

• The pole ofGT
Ac

λϕbe
ν

is the same as the pole ofGT
ϕcd

λ ϕbe
ν

and/or the pole ofGT
ϕ̄cd

λ ϕbe
ν

;

As showed in eq. (3.32), the two-point functionsGT
ϕcd

λ ϕbe
ν

andGT
ϕ̄cd

λ ϕbe
ν

areα-independent, as

a consequence of BRST invariance. As such, their poles are also α-independent and, thus,
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the pole ofGT
Ac

λϕbe
ν

is alsoα-independent. By assumption, this pole is the same as the pole of

GT
AA. Hence, the pole ofGT

AA is independent ofα.

• The pole ofGT
Ac

λϕbe
ν

is different from the poles ofGT
ϕcd

λ ϕbe
ν

andGT
ϕ̄cd

λ ϕbe
ν

.

In this case,GT
ϕcd

λ ϕbe
ν
(m2

∗)< ∞ andGT
ϕ̄cd

λ ϕbe
ν
(m2

∗)< ∞. Also, ΓT
Aa

µϕcd
λ
(m2

∗) andΓT
Aa

µϕ̄cd
λ
(m2

∗) are not

singular. SinceGT
Ac

λϕbe
ν
(m2

∗) = ∞, the only way the lhs of eq. (B.3) can produce a finite value

is if ΓT
Aa

µAc
λ
(m2

∗) = 0. Assuming thus thatΓχΩA(m2
∗) is not too singular, we conclude thatm2

∗ is
α-independent.

In summary, if the zeroes ofΓT
AA are gauge parameter independent then the poles ofGT

AA also are.

C The insertion ΓT
χΩA

As already underlined, the Nielsen identity (4.12) ensuresthe gauge parameter independence of the
zeroes ofΓT

AA if the insertionΓT
χΩA is not too singular at the zero. In this Appendix we work out an

expression for such insertion in terms of connected Green functions which turns out to be quite helpful
for investigating the nature ofΓT

AA.

To begin with, we write the insertion as

ΓχΩa
µAb

ν
=

∂
∂χ

δ
δΩa

µ(x)
δ

δAa
ν(y)

Γ , (C.1)

and we have to act with the transverse projector on eq. (C.1).From eq. (3.25), we write

ΓχΩa
µAb

ν
=

∂
∂χ

δ
δΩa

µ(x)
δ

δAa
ν(y)

(

Zc+

∫
d4x1 Jiφi

)

=
∂

∂χ
δ

δΩa
µ(x)

δZc

δAa
ν(y)

. (C.2)

Applying the functional chain rule, we obtain

ΓχΩa
µAb

ν
=

∂
∂χ

δ
δΩa

µ(x)

(∫
d4x1∑

i

δJi(x1)

δAb
ν(y)

δZc

δJi(x1)

)

=

∫
d4x1∑

i

(

δ3Ji(x1)

δχδΩa
µ(x)δAb

ν(y)

δZc

δJi(x1)
− δ2Ji(x1)

δΩa
µ(x)δAb

ν(y)

δ2Zc

δχδJi(x1)

+
δ2Ji(x1)

δχδAb
ν(y)

δ2Zc

δΩa
µ(x)δJi(x1)

+
δJi(x1)

δAb
ν(y)

δ3Zc

δχδΩa
µ(x)δJi(x1)

)

. (C.3)

Applying the the transverse projectorPµν(p) =
(

δµν − pµpν
p2

)

and taking into account color invariance

and ghost number conservation, expression (C.3) reduces to

ΓT
χΩa

µAb
ν

= − i
2

∫
d4x1d4x2

[

ΓT
Ab

ν(y)A
c
σ(x1)

〈c̄d
x2

bd
x2

Dae
µ ce(x)Ac

σ(x1)〉T
c

+ 2ΓT
Ab

ν(y)ϕck
σ (x1)

〈c̄d
x2

bd
x2

Dae
µ ce(x)ϕck

σ (x1)〉T
c

]

, (C.4)

with 〈. . .〉c denoting the connected correlation functions. Passing to Fourier space gives

ΓT
χΩa

µAb
ν
(p) =− i

2
ΓT

Ab
νAc

σ
(p)GT

(Dae
µ ce)Ac

σ
(−p)− iΓT

Ab
νϕck

σ
(p)GT

(Dae
µ ce)ϕck

σ
(−p) , (C.5)
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whereGT
(Dae

µ ce)Ac
σ
(p) andGT

(Dae
µ ce)ϕck

σ
(p) are the Fourier transformations of the transverse components of the

connected Green functions〈(∫ d4t c̄d(t)bd(t))Dae
µ ce(x)Ac

σ(x1)〉T
c and〈(∫ d4t c̄d(t)bd(t))Dae

µ ce(x)ϕck
σ (x1)〉T

c .
From the decompositions

ΓT
χΩa

µAb
ν
(p) = δabPµν(p)ΓT

χΩA(p
2) ,

ΓT
Ab

νAc
σ
(p) = δbcPνσ(p)ΓT

AA(p
2) ,

ΓT
Ab

νϕck
σ
(p) = f bckPνσ(p)ΓT

Aϕ(p
2) ,

GT
(Dae

µ ce)Ac
σ
(p) = δacPµσ(p)G

T
(Dc)A(p

2) ,

GT
(Dae

µ ce)ϕck
σ
(p) = f ackPµσ(p)G

T
(Dc)ϕ(p

2) , (C.6)

eq. (C.4) becomes

ΓT
χΩA(p

2) =− i
2

ΓT
AA(p

2)GT
(Dc)A(p

2)− iNΓT
Aϕ(p

2)GT
(Dc)ϕ(p

2) , (C.7)

which is useful for a better understanding of the Nielsen identity (4.12).
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