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Abstract

In order to construct a gauge invariant two-point functioaiyYang-Mills theory, we propose the
use of the all-order gauge invariant transverse confiqumafi". Such configurations can be obtained
through the minimization of the functionaf,;,, along the gauge orbit within the BRST invariant for-
mulation of the Gribov-Zwanziger framework recently putfard in [1,2] for the class of the linear
covariant gauges. This correlator turns out to provide aaharization of non-perturbative aspects
of the theory in a BRST invariant and gauge parameter inddgrgrway. In particular, it turns out
that the poles o(A{}(k)A{}(—k» are the same as those of the transverse part of the gluongaropa
tor, which are also formally shown to be independent of thegggparameten entering the gauge
condition through the Nielsen identities. The latter fallfom the new exact BRST invariant for-
mulation introduced before. Moreover, the correla(t@ﬂ(k)ﬁ{}(—k)) enables us to attach a BRST
invariant meaning to the possible positivity violation bétcorresponding temporal Schwinger cor-
relator, giving thus for the first time a consistent, gaugepeeter independent, setup to adopt the
positivity violation of (A{}(k)A{,‘(—k)) as a signature for gluon confinement. Finally, in the context
of gauge theories supplemented with a fundamental Higgs fied use(A[](k)A[}(—k» to probe the
pole structure of the massive gauge boson in a gauge invéaision.
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1 Introduction

In this paper we give a sequel to our previous works [1, 2],rele@m exact BRST invariant local formu-

lation for the Gribov-Zwanziger (GZ) framework][3, 4] wasrided in the class of the linear covariant
gauges. In its original original versionl [3], 4], the Gribdwanziger setup was outlined in the Landau
gauge,auAﬁ = 0, in order to take into account the non-perturbative phesmwn of the existence of

Gribov copies, which affects the Faddeev-Popov quantizgirescription.

According to [3/ 4], the main idea to face the issue of the @ribopies was to restrict the functional
integral to a certain regiof in field space, called the Gribov region, which is defined as

Q={ A} 0,A°=0, M*°(A) >0}, (1.1)
whereM3(A) is the Hermitian Faddeev-Popov operator
M3 = —&%02 -+ g f2°A%a,, with 9,A%=0. (1.2)

Later on, important properties of the regi@were rigorously established|[6], namely:

i) Qs convex, a property which follows from the linearity of tRaddeev-Popov operatr 2.

i) Qisbounded in all directions in field space. The boundywhere the first vanishing eigenvalue
of the Faddeev-Popov operator shows up, is called the fileb@horizon.

iii) Every gauge orbit crosses at least once the re@ion

In particular, propertyii) gives a well defined support to the restriction to the regbnRemarkably,
a local and renormalizable actibean be constructed for the restriction @ the so-called Gribov-
Zwanziger action, see|[5] for a general review.

In [1, 2], we have been able to move away from the Landau gayegeeralizing the Gribov-Zwanziger
construction to the class of the linear covariant gaugesg,iA, = iab, wherea is the (non-negative)
gauge parameter. Obviously, the Landau gauge can be seepaaticalar case of the linear covariant
gauges, corresponding to= 0. Moreover, as already mentioned, we were able, for thetiing, to
write down an exact nilpotent BRST symmetry of the Gribovafwaiger action in the linear covariant
gauges which has enabled us to derive a set of important piegenamely: the independence fram
of the BRST invariant correlation functions and an exacbader prediction for the longitudinal part of
the gluon propagator which agrees with the available kttiemerical simulations as well as with the
results based on the analysis of the Dyson-Schwinger emsatsee eq[ (3.85) and related comments
at the end of Sectidnl 3. Recent progress on the extensiore @ tibov-Zwanziger set up to the linear
covariant gauges was also donelin[[9, 10]. It is worth memgpthat in [11], a non-perturbative BRST
symmetry was constructed for the Gribov-Zwanziger actiotiheé maximal Abelian gauge and in[12], a
non-perturbative BRST quantization was proposed for Claecrari gauges.

The main tool employed in the analy€is[[1, 2] has been thednuirtion of a transverse and order by order
gauge invariant field\}

dAl=0, BAl=0, (1.3)

1We remind here tha® itself is not completely free from Gribov copi€s [7, 8], iaglditional copies still exist insid@. A
smaller region withirQ exists which is fully free from Gribov copies. This regioncialled the fundamental modular region.
Though, unlike the case of the Gribov regi@n a local and renormalizable framework implementing thériet®n to the
fundamental modular region is, at present, unknown. Thegefve shall proceed by focusing on the regibn




whered stands for the generator of an infinitesimal gauge transitom. As a consequence, the corre-
lation function

(ALRAS(—K)) | (1.4)

is transverse and turns out to be left invariant by the BR&idfiormations. As such, it is independent
of the gauge parameterentering the gauge condition. For the benefit of the readargdetails of the
construction of the transverse gauge invariant fAﬂdhave been surveyed in Sectldn 2.

The aim of the present work is that of establishing usefdtr@hships between the correlation function
(1.4) and the transverse component of the gluon propagator,

(AOA(K)T = (802 ) (WA w5
In particular, we shall be able to show that:

e the poles of the transverse component of the gluon propaffaff) are independent of the gauge
parameten. This nice property follows from the Nielsen identities the two-point gluon corre-
lation function which can be derived from the Slavnov-Tayttentities corresponding to the exact
nilpotent BRST symmetry of the Gribov-Zwanziger action lie finear covariant gauges [1, 2].
We point out that, in the present case, the study of the Nidtbentities requires a lengthy anal-
ysis, due to the existence of a nontrivial set of mixed prapas, a structure typical of the local
Gribov-Zwanziger formulation. Sectiohs[3, 4 and AppensliB¢d contain the detailed analysis of
the structure of the Nielsen identities. We will also briaflgcuss the relation between the Nielsen
identities and Landau-Khalatnikov-Fradkin transforroas.

e a second property which we shall be able to prove is that th& BiRvariant correlation function
(@.4) coincides with the gluon propagator evaluated in thedau gauge, namely

(AB(k)AS(—k)) = <Au(k)Av(_k)>Landau: (Ap(k)Av(—k»a:O, (1.6)

a relation which gives a quite practical way to evalu(a%é(k)A[}(—k». Moreover, taking into
account that the poles of the transverse part of the gluopagiator, eq[(115), are independent of
a, it follows immediately that the poles df\}(k)Al(—k)) and those of Ay(k)A,(—k))T are the
same, and this for a generic valuecof

e these two properties enable us to consider the BRST invaraarelation functior(Aﬂ(k)A{](—k»
as the natural candidate to discuss the positivity viatatibthe gluon propagator in a BRST and
a-independent way, via the evaluation of the correspondingpbral Schwinger correlator, a topic
which will be addressed in Sectioh 5. This is a rather releissue, as the positivity violation is
nowadays taken as a strong indication of gluon confinemeetfa instance [13, 14, 15,116,/17,
18,[19/ 20, 21!, 22, 23, 24, 5] and references therein. Irstmse, it is certainly worth to have at
our disposal a BRST invariant framework to look at it.

We end the paper with an application to the study of the mask#se transverse component of the
gluon propagator when Higgs fields in the fundamental repitagion ofSU(2) are added to the Gribov-
Zwanziger action.



2 Survey of the construction of the gauge invariant transvese fieldA{}

The gauge invariant configuratidlq], see Appendix_A and [1], is constructed by minimizing thecun
tional fa[u] along the gauge orbit @&, [6} [7,/26], namely

falu = rPi}nTr/d“xAﬁAﬂ,
u
Al = u'Au+ lguTauu. (2.1)
In particular, the stationarity condition of the functidrifd. 1) gives rise to a non-local transverse field
configurationA{], OHA{] = 0, which can be expressed as an infinite series in the gaudéfiele.

0,0
Al = <6w——gzv>(pv, 0, =0,
1 ig[1 1
@ = A —ig [ﬁaA,AV} +% [ﬁGA,a\,ﬁaA] +O(A3) . (2.2)

Remarkably, the configuratioA{] turns out to be left invariant by infinitesimal gauge tramsfations
order by order in the gauge coupliad27] (see also Appendix]A and the next Section) as

3A, = 0,
OAL = —0uw+ig[AL W) . (2.3)

From expressior_(2.1) it follows thus that
A2 = Tr/d4xA']A[},
= 1 [ [A“ (qm - %) As_gfam@am) (a—lzaAb> AS] oMY, (24)

The gauge-invariant nature of expression|(2.4) can be maaéfest by rewriting it in terms of the field
strengthF,. In fact, as proven iri [26], it turns out that

1 1 1 1 1
Pain = _ETr/d4X (Fuvﬁlzuv—FZlﬁF)\u |:§DKFK)\>§D\)F\)U:|
1 1 1
—2i ﬁF)\u |:§DKFKV7 ﬁDvF}\u}> +O(F4) ) (2.5)

from which the gauge invariance becomes apparent. Thetopé)~! in expression(2]5) denotes the
inverse of the covariant Laplacidd? = D,D,, with Dy, being the covariant derivative [26].

3 Specification of a local and BRST invariant non-perturbatve action
and its Slavnov-Taylor identities

Let us proceed by specifying the non-perturbative local BRSariant action which will be taken as our
starting point. In order to take into account the non-péudtive effects of the existence of the Gribov



copies, we shall make use of the BRST invariant Gribov-2Zvgerzaction in linear covariant gauges as
recently worked out in 1,12, 28, 29]:

S=SmM+SFrPrt+tSez+S, (3.1)
where 1
Sou=7 [ ¢XFIFS. (32)

while Sp denotes the Faddeev-Popov gauge-fixing in linear covagamges, i.e.
Sep— / d4x<% baba+iba6uAﬁ+6aauDﬁb(A)cb) , (3.3)

wherea is a non-negative gauge paramet#rthe Lagrange multiplier an¢t?,c?) the Faddeev-Popov
ghosts. The Faddeev-Popov operator is given by

MP(A)o = —5%0% 0 +g 2% (ASe) . (3.4)

The termSsz in expression(3]1) stands for the Gribov-Zwanziger adtidts local form, as constructed
in [1,12,[28)29], namely

Soz = [ d' (~EEM(A) O + EMT(AN LS+ g A0 E)) . (35)

where M3(A") denotes the gauge invariant counterpart of the FaddeeovPoperator which, as a
consequence of the transversality of the configura(tm})ﬁ, reads

MO(A") = —&%0% 1 g F2*(A") %0, (3.6)
Unlike expression(314), the operat®f2®(A"), eq. [3.6), is Hermitian due to the transverse character of
AN,
Following [1,[2,[28, 29], the fieldﬁ{j can be localised by means of the introduction of an auxiliary
Stueckelberg field?, i.e. _

Af = (AMETA = hTARTaN 4 lg hfa,h, (3.7)
with _

h=g9&T" (3.8)

The local invariance under a gauge transfarm SU(N) of the fieIdA[} can now also be appreciated
from the transformation prescriptions

h—uth, h—hfu, Ay — ufAu+ éuTapu (3.9)

The fields($3°, $3°) are a pair of bosonic fields, whil@xX°, w2°) are anti-commuting fields. These fields
are employed to cast in local form Zwanziger’s horizon tegaded to get rid of the zero modes affecting
the Faddeev-Popov operatér (3.4). The mathematical patiifin of our construction can be found in

[1].
Finally, the term
S = / d*xT2ay (AN, (3.10)



implements, through the Lagrange multipligthe transversality of the field", 9,,(A")a = 0, which can
be seen as a constraint on the Stueckelberg field. Indeée, $ttieckelberg fieleP is eliminated through
the transversality constraiap(Ah)ﬁ = 0, we get back the non-local expression for the fkﬂdeq. 2.2).
This constraint also plays a crucial role to maintain theaumlblet renormalizability of the theory [29, 34].
If we simply setS; = 0, we would end up with similar power counting non-renoraedbility issues as
those plaguing the original Stueckelberg model [30].

As pointed out in[[1L, 2, 28, 29], the acti@enjoys an exact nilpotent BRST invariance, namely

sS=0, =0 (3.11)
with the following full set of local transformations definad

s = D%, sé= %f""bccbcC

s® = ib? si=0.

sHl = —igc®(T3)knk)
S(I)ab -0 S(;.)ﬁb _

il ’

s = 0, spp’=0,

st? = 0. (3.12)

The BRST invariance of the actid®follows immediately by noticing that the fiem, eq. [3.7), is left
invariant under the BRST transformations, i.e.

s(AMA=0. (3.13)

Also, the BRST transformation of the Stueckelberg figlccan be constructed iteratively frofsh!),
obtaining
&=~ 3 g 22famffmp°cpaqaf+0( ). (3.14)

3.1 Slavnov-Taylor identities

The BRST invariance of the actiddcan be translated at the functional level into powerful Btax
Taylor identities. To that purpose we employ the trick ofeexting the BRST transformations on the
gauge parameter, seel[31, 32,12], i.e.

=y, s=0, (3.15)

wherey is a parameter with ghost number 1, which will be set to zenesbore the initial theory. As
explained in([31, 32,12], the extended BRST transformatieqs. [3.12),[(3.15), will permit us to keep
control of the dependence of the Green functions from thggaarameten at the quantum level.

Taking into account the extended BRST transformafion {3th& gauge fixing term becomes now
/ ' ?ba+éaa ) / a'x baba+|baapAu X“dba+éaa DEMS), (3.16)
so that the actlorE(E] 1) reads
S = S(M+/d4 ( WAL — Xﬂba c0,D3(A) > /d4xr Ou(AM3

/d4 CM Ah)abq)lJ +chM(Ah)ab bc+gy2fabc Ah (¢ _|_$HC)> )
(3.17)




We are now ready to establish the Ward identities of the thdewllowing the general procedure of the
algebraic renormalization [31], we introduce a set of BR®/&riant external sourced, L K?, 72)
coupled, respectively, to the non-linear BRST variatiohthe elementary fieldsAj, c?,&?) as well to

the composite operathAh) Namely, we start with the complete classical action
S-Sy / d*x 72(AMa+ / d*x Q2 (SAR) + L?(s¢) + K3 (£%)) | (3.18)

where
s> =0. (3.19)

The complete actiol turns out to obey the following Slavnov-Taylor identity,

S(Z) =0, (3.20)
where
555X BI B 8L 3E 55 o3
_ 4 a =
2)= / d X( 503 oA | Bladch | oKaoEa | +ib ) Xoa (3.21)

It was already shown in [29] that, when the Gribov horizoreisioved, corresponding to sgt= 0, the
actionZ, eq. [3.18), is renormalizable to all orders of perturbatieeory. Relying on the discussion of
[33], which was essentially based on the observation tleatahbov-type gluon propagator following
from the actionS, see eqs[(3.35), (3.86), displays a scalar form factorctmabe decomposed as

2 2
ki — i — ﬂ , (3.22)

k4 +202Ny* k2 k2(k* + 2g2Ny?)

and generalizations thereof, one does expect that, onoemalizability has been proven fgf = 0, it
will be preserved wheg+# 0, given the strongly suppressed UV fall-off of the secomtht eq. (3.2R),
which encodes in fact the dependence from the paramget&rformal proof to all orders based on the
Ward identities is under constructidn [34] and will be prasé in a separate detailed work. Keeping this
in mind, the Slavnov-Taylor identities hold at the quantavel, namely

S(r)=o, (3.23)
with
or r arar o ar .8 . ar
— 4 a
- ¢ X( 503 5A7 ' oladct | oKagea ) X3a’ (3:29)

wherel" denotes the generator of th€11Green functions of the model. The identitiés (3.23) have
far-reaching consequences, already exploited in pait]inwBere an all order algebraic proof of the
independence from the gauge parametef the correlation functions of BRST invariant operators ha
been given, together with an exact prediction for the lardiital part of the gluon propagator.

Let us give a closer look at the two-point correlation fuoit of the model. To that end we introduce
the generatoz® of the connected Green'’s functions through the Legendnsfimamation

=2+ [ a8 00 (3.25)

(3.26)



where{@ } is a short-hand notation for all fields afd } for the external sources introduced for each
field @. The propagators of the elementary fie{@gx)@; (y)), corresponding to the connected two-point
correlation functions are given by

0Z°
Gag (X—Y) = (@(X);(y)) = W‘J_o- (3.27)
Also, from eq.[(3.26), we ﬁt
5 - OT ¢ O 3 ¢ & &z (3.28)
T 80d) 4 3@dp 8 Zé(ﬂ&g( 3XdJ; ’ '
ie.
where we have definedy g, = %.

When written in terms of the connected generating functiaha Slavnov-Taylor identity (3.23) takes
the form

0z¢ 0z¢ 0z¢ . 0Z° 0z*
4 O i A(X)—2 . Vo _
/ d x(JAa(x)mﬁ(x) T grag e ggang + 98 &ba(x)>+ -0, (330
Acting, for example, with the test operators
2 2 2
oJ 66;! ’ oJ 6&] ’ oJ 6&] ’ (3:31)
b (083452 (V) b (083455 (Y) e (83553 (Y)

and setting all sources to zero, we immediately get thatrieggatorgda° (k) dS?(—k)), (93P (k) oS (—k)),
($3(K)cd(—k)) are independent of the gauge parametemamely

(O (K)BS(—K)) _ OO (k)9S (—K)) _ (KBS (—K))
Jda da da

=0, (3.32)

a result which follows by observing that the fieldst®, §3°) are left invariant by the BRST transforma-

tions and, moreover, they interact only with the BRST irwarifield(Ah)ﬁ . Likewise, acting with the
test operators

& & &

—, . : - : (3.33)

OJR(X)dA’(y) 073(X)8Jyea(y) 073(X)dJgea(y)

we get
QA KA (k) _ A (KOF(K) _ A RS(K) _ (3.34)
oa da oa ’ ’
Finally, we remind that, according to [28, 2], for the gluampagator we have
k o kyk

(A (—) =5 (8~ 5 ) GRA(€) + 0 42 (3.3

showing that the introduction of the Gribov horizon doesmodify the longitudinal component which
remains equal to its standard perturbative expressiors rEsult is supported by independent studies of

2The sum ovek implicitly includes an integration.



the linear covariant gauge beyond perturbation theory[38&6,37] for a lattice verification. Dyson-
Schwinger equation’s studies of the linear covariant gaJ@é, 39, 40] automatically incorporate the
aforementioned behaviour of the longitudinal componergiesn by the standard Slavnov-Taylor iden-
tity is part of the premisses in this formalism. Yet anothgpr@ach to deal with the linear covariant
gauge can be found ih [41,142].

In the present case, the tree level expressiorGﬁ;[(kz) is given by the Gribov type propagator

k2

T 2 _
Gaalk’) tree level K4+ 2g2Ny* (3.36)

4 Nielsen identity for the gluon propagator

We are now ready to derive the Nielsen identity for the gluorppgator([43, 44, 45]. Roughly speak-
ing, the Nielsen identities are a way to control the gaugarmater dependence of certain correlation
functions and are ultimately a consequence of the BRSTiavee [46].

Though, in the present case the task is not straightforvaare {o the existence of mixed propagators. Let
us begin by finding the relationship between the transvessgonent of the gluon propagat@f,KA(kz)
and the PI two-point functions of the elementary fields. From €q. (B.28 have

rAaAg(k)GpéAe(—k) + rAabC(k)GbcAe(—k) + rAﬁEc(k)GEcA\t}(—k) + rAal—c(k)GTcAe(—k)
+T pggss (K) Gygop (—K) + T pggs (K) Gigonp (—k) = 5%, . (4.1)

Multiplying by the transverse projector

k
P (K) = 8 — kI;ZV , (4.2)
and taking into account Lorentz invariance, we get
R (90G ey (—K) T R (K)Gng (—K) + T hges (K G () = —8PBw(k) . (4.3)

From global color invariance and the absence of the totgiyrsetric tensod2¢ (cf. discussion in the
next section), we may ot

rAuAG(k) = 3Bk MAa(K?)
¢Cd(k) = I'qu;cd(k) = 1248,5 (k) T hy (K?) |

Gropr (K = 8PPoy(K)GAA(K?) |

Gaatne(—K) = Geapp(—K) = F* IR (K)GRy (K7) | (4.4)
so that

FAAK?)GAA(K?) + 2NT 3 (K?)GRy (K?) = — 1, (4.5)
which gives

L T : (4.6)

Gl 1+2NrLGL,

3We shall omit field indices in functional derivativesofor notational simplicity.



To proceed, let us derive the Nielsen identity Fgy,. To that aim, we act on the Slavnov-Taylor identities
(3.23) with the test operator
63
OXOAA(X) (X)5AL(y)
and set all fields, sources and the parampgtierzero. Taking then the Fourier transform, making use of

the ghost number conservation, Lorentz covariance, col@riance, and multiplying everything by the
transverse projectaly (p), one gets

(4.7)

0 rXﬁAg(pz) T 2\ T 2 rT 2y T 2
o = T hoas (PP) Tiagaa(P%) — Tagas (P°) Mgens (P7) (4.8)
whereI'ApAe( p?) is the transverse part of th@ILtwo-point gluon correlation function, i.e.
o) = B AP paer = (B~ P2 ) (AR(PIAD( P @9

and wherd” ;Qg Aﬁ(p2) stands for the Fourier transform of the transverse comparfehe insertion

o°r
(4.10)
C
6X6A“ 69 fields= sources=x =0
Setting now
MXasas(P?) = 3% Pou(p) Traa(P?) . (4.11)
eq. [4.8) becomes
0 rT 2
% = — 2T Aa(P*)Myaa(P?) | (4.12)

expressing the Nielsen identity obeyedrb&A( p?). Likewise, we can derive the Nielsen identity for the
mixed 1P| form factorlA,, eq. [4.4), i.e.

ok, (p?
% = T aa(P*)Txa0 (P*) = T (P*)30a(P7) (4.13)

wherel’XQ¢ stands for the form factor

rXQd¢b°(p2) = 1925, (p) Myqe (P7) | (4.14)

andr'? X ¢bc(p2) is the Fourier transform of the transverse component ofrthertion

>r
3X3S°(x)3Qd (y)

(4.15)

fields= sources= x =0

We can now derive the Nielsen identity for the gluon propag&},(k?). Taking the derivative of
eq. [4.6) with respect to the gauge parametand making use of ed._(4.112), it turns out that

0 1 erA 1 0 T

——=-2 ——10g(~GaalAn) (4.16)
00 GJ, Gia Gaao0

expressing the Nielsen identity for the transverse compiooiethe gluon propagatdsj ,
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Unfortunately, due to the presence of the term(1eGAl A,), it is yet unclear how eq[(4.16) would
imply that the poles oG}, area-independent. We remind in fact that, in the present caggl A, #
—1, due to the existence of mixed propagators. A more comntplichlielsen identity involving the
determinant of the RI two-point function is needed to achieve the desired reautbpic which will be
worked out in great detail in the next subsection. Befor@idglinto those details, let us first spend a
few words on the quantitVIQA appearing in eqsl_(4.112) arild (4.16). In particular, lookahgxpression
(4.12), one is led to state that the zeroe:t'ﬁ),g( p?) should be independent of the parametedue to
the presence df },(p?) itself in the right hand side of ed. (4]12). Evidently, thistiue provided the
factorF;QA is not too singular at the zero Bf,,(p?), so as to compensate the zero itself. This is a not so
evident question for which, to our knowledge, no completensar based on Ward identities is available
so fafl. Itis therefore useful to outline some argument in favouthefabsence of unwanted singularities
in the quantityI'IQA. As shown in Appendik IC, the quantit')éT(QA can be rewritten as

aa(P2) = — 5T Aa(P2) Glboa(P?) — INF Ry (F%) Gy (PP) (4.17)

whereG g, and G, are the form factors of the Fourier transform of the conribos-point Green
functions ((/ d* c¥(t)b%(t))DEc3(X)AS (x1))d and ((f d* c¥(t)b4(t))(D3%®) (X)95(x1))d. Thus, the
Nielsen identity [(4.12) becomes

orx .
a&AA =il A (FXAG(TDC)A +2NT g G(TDc)q)) ) (4.18)

which turns out to be quite useful for an order by order Feymmtiagrammatic analysis. Let us first
focus on the ternh‘XAFXAg(TDC)A, which is already present in standard Yang-Mills theory] [48 order

to have a compensation at the zerd @f, the connected Green functi@yy,, should develop a double
pole, which seems unlikely to happen, at least in an orderrgrd&-eynman diagram expansion. This
reasoning is also supported by explicit one loop calcutatio ordinary Yang-Mills theonyi [43], where
the quantityg(TDC)A indeed does not develop a double pole. A similar argumeniiegpas well to the
second temT {1 3y Gbeg- [N SUMmary, in the following we shall assume that the quwarit)o, is

not too singular to compensate the zeroet?b,;. Though, an explicit proof valid to all orders of this
statement remains to be worked out, even for standard pative QCD.

Before ending this section, it is worth emphasizing thatabgiliary fields (§3°, $3°, wP, o) of the
Gribov-Zwanziger actionSsz, eq. [3.5), develop their own dynamics, giving rise to addal non-
perturbative effects encoded in the formation of BRST iiartrdimension two condensatésy, *Al®)
and ($3°073° — wiwi). As shown in[[48 49, B0, 52], taking into account the exiseeof the aforemen-
tioned dimension two condensates, leads to a refinemene dbtibov-Zwanziger theory, whose action
is given by

m?
Sroz—Soz+ - [ A APAT 12 [ (008 - el | (4.19)
whereSs; is the Gribov-Zwanziger action of ed. (8.5) and where, ashmascthe Gribov parametgf,
the parameterg?, |2), corresponding to the condensatef®AL?) and($3Ph3° — wiPwi), respectively

, are determined in a self-consistent way by suitable gaptamns [50]. Accordingly, the starting action
S eq. [3.1), gets modified into its refined version

XR=Sm+SFP+Rezt+t S, (4.20)

4We were unable to understand the simple argument providglirSect. 4].
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which gives rise to the following tree-level gluon propamdi,[2,[28]

K2+ i kpkv a Kk,
3(k)AD(—k 2 S — 2 )+ S 4.21

AUIA(=K)) e tevel= (k2+rr12)(k2+u2)+292Ny4< k2 >+ k2 k2 (4.21)
One observes that the transverse component of expressil) (¢ suppressed in the infrared region,
attaining a non-vanishing value lat= 0, while the longitudinal component still coincides witkethsual
perturbative expression of the linear covariant gaugesndRlieably, expressior_(4.21) is in good qual-
itative agreement with the most recent lattice data on trepaint gluon correlation functions, see
[35,36,37].

The BRST invariance and the associated Slavnov-Taylottittesgeneralize straightforwardly to the
refined actiortg, eq. [4.20). In particular, the Nielsen identify (4.16)a®Ids in the refined case.

4.1 Nielsen identities for the determinant of thelPI propagator matrix

Itis possible to provide a unifying description of thedependence of the poles of the mixed propagators.
We depart again from the action in €g. (3.17) and set

¢Bc+¢bc — UL?C
4.22
{ ¢BC_¢HC = V£C ( )
Then it is straightforward to check that in the actibn (8,178 can replace
(FﬁcMab(Ah ¢ +gy2fabc Ah (¢ +$ﬁc)
—  —UZeP(AMUSE — vEearab(AMVC + gy? 12Po(AM)aU f° (4.23)

as the residual terms in. A" can be reabsorbed by a harmless shift of the field

For the rest of this subsection, we can ignore the fhe!uﬁi’as these decouple from the theory. In fact they
do not mix with the gluon field and can be integrated out eyaotjether with part of théw, w)-ghosts.

Next, we shall decompo:tq?c into its color symmetric and antisymmetric components,ivated by the

presence of the antisymmetric tenddPC in the tree level mixing between the fielUﬁ"’ and(Ah)ﬁ. In
practice, we set

ue = uPdrul, (4.24)
with
(b _ 1 b jeb
U = S (uferu,)
b 1
Ut = 2 (ue-ug) (4.25)

Clearly, (A")3 mixes only withU™. At tree level, we haveM@(AM) — —925%. As a consequence,
there is no apparent mixing between the symmetric and antistric sector. Including interactions,
the 0, [f3°°(AM)Ce] term in 2/3°(A") couples the symmetric sectébc) with the antisymmetric one
[bc]. Nonetheless, in what follows We show that one can still@kelthat beyond the tree level mixed

propagators adJy 2y or AHU\, Would be nonvanishing. Onlwﬁu\ﬁb%p is relevant.

12



° (AﬁU\EbC)>p should, given the symmetry inc, be proportional to the completely symmetric tensor
d?¢, as the only available independent invariant rar&d&N) tensors ard 2°¢ andd2"°. Though,
given that our theory does not contain verticesl3f, it can never emerge from loop correcti@ins
and as sucr‘(,AﬁU\SbC)>p = 0 based on global color symmetry.

e Global color symmetry can also be invoked to prove thq?b]U\ECd)>p = 0. Indeed, given the

symmetry properties o(U,Eab]U\SCd)>p, it must be proportional to an invariant rankSt(N) tensor

qacd \which is antisymmetric irmb and symmetric ircd. As discussed iri [53], there can only be
found 8 independent rank 4 tensorsSd(N). Out of these, only the set

U= {5ab50d’5ac5bd’5ad6bc’ facef bde’ fabefcde} ’ (4.26)

is relevant in our case, since the other possibilities willex contain the absem?®® tensor, or

be completely symmetric iabcd (see also[[54]). A priori, a potential candidate tensor rlgh
73bcd = T ([t3,tP]{t®,t}), but upon closer inspectiort;2°¢d ] fabegcde and, as such, it can again
be excluded due to the absenced®¥ tensor in the theory. To close the argument, one can check
that upon proper (anti-)symmetrization, no tengéf can be formed with elements &f

Thus, having excluded exactly the mixing with® , we can forget about the symmetric sector and focus
on the antisymmetric sector. We can further decomptiﬁ% as follows,

Ul[lab] _ %fabpfpmrulgm"i JrUlgab] _%fabpfpmrul[lmﬂ i (4.27)

=fabpyp —gan

We notice thatf@g? — 0 by using fabefdbe — N&2d. SinceU = L £PMU™, the relevant piece of
eq. [4.28) simplifies to

N
/ d*x <§u§azug +N gyZAﬁfPWU\?> : (4.28)

Evidently, there will be mixedU,A) propagators. Thanks to this last decomposition, the ctdoctsire
of the propagator in th@J,A) sector is drastically simplified, as the only available teris now 5.

Thanks to the orthogonality of2°¢ and SLbC], we also get(AﬁSﬁ’%p = 0 since the latter can be only
proportional tof ¢,

We are now ready to face the derivation of the Nielsen idestit We reconsider the Slavnov-Taylor
identity (3.24). After the previous field decomposition, wan derive a similar matrix relation as in

eq. [4.1), viz.

I agag (K)Gg g (—K) + T age (K) Gion (—K) + M agee (K)Geoay (—K) + T agre (K) Gropp (—K)
+T aug (K) Gy (—K) = —82°8y . (4.29)

As before, without loss of information, we can project theefyping expression on the transverse sub-
space, yieldir@

M Rans G + M AausGlgar = 0™ B - (4.30)

5Seel[51, Sect. 12.4] for a discussion about the ted®8rand when it can (not) appear.
6To avoid notational clutter, we will refrain from writing érmomentum dependence from now on.
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From global color invariance and transversality of the @rgpropagators, we @t

rXﬁAg = 6aCfPu0rXA, (4 31)
Mhevs = Bl Ry (= Thang),
so that eq.[(4.30) collapses to
Likewise, we can derive that
MaaGau+TAUGly = O, (4.33)
FJaGAA+TluGla = O, (4.34)
FoaGA +TIuGly = -1 (4.35)
Said otherwise, up to a sign, the matrices
rT rT GT GT
rr = ( pa A ) and G' = ( I ) 4.36
rh Mo Gh, Gy (4.39)
are each other’s inverse,
g’ =—1. (4.37)

Ultimately, we are interested in the poles®f,. From eq.[(4.37), it is clear that the mat®{, and thus
its elements, can only develop poles due to zeroes ifi'dewWe do not expect poles @ > 0 in the
elements of the & 2 matrixI'T, as these would need to correspond to zeroes in one of thagatips
atp? > 0. Let us present a justification of this. From €qg. (4.37), meediately derive

T
GUU

= oAy
(G- GLly

(Gh2—GLGl,

T
GAA

rh, = .
WY (G2 - GRAGTy

Mau=— (4.38)

Here, we have taken into account that the matrices are §cgyahmetric in(A,U).

Assuming thatr? is a simple pole 06}, i.e. GAA(m?) = o, we can discriminate between 4 possibilities:
e G (M) < oo and G}, (m2) < oo: it follows that I Jo(m2) = I' X, (m2) = 0, while [}, (m?) =
m < o to comply with eq.[(4.35).
uu

e G, (m?) = andG[, (M) < o: in this case, due to the presence(Gf,(m?))? in expressions
(@.38), we gel j,(nf) = 4, (M) = My (m?) = 0.

e Gi,(m?) < » and GJ),(m?) = «: the relations[(4.38) again allow to deduce thay(m?) =
rXu(mf) = FGU (mf) =0.

o Gjy(M) = o andGj, (M) = oo: again, we gef ao(ME) = [ A, (ME) = I, (me) = 0.

7At this point, the importance of having reduced the mixingr® to the one betweetkﬁ andUﬁ‘ can again be appreciated,
otherwise we would have had to parametrize (unrestrictezybymetry) rank 4 propagators aﬁbq)_cvd>.
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So, in all cases the matrix elementsidf are nonsingular at the pofe? of G ,.

The a-dependence of the zeroes of the determinant can now beolledtby a Nielsen identity. In
general, we have
9 getr™ = detrTTr (rT)—lirT ~ _detrTTr (6T (4.39)
da da da ’ '
The elements O%FT correspond to analogous relations[as (4.02)-{4.13). Netkie identity [(4.1R), we
also need

arl
T.(AU = —TaaTyou —MAuM oA, (4.40)
or;
ﬁ = —zr,T\Ur;QU. (4.41)

The derivation of the latter equalities goes as usual by@atiith the appropriate test operator on the
Slavnov-Taylor identity, with similar decompositions aseq. (4.11) for the form factors.

We are now armed to compute the Tr appearinf_in (4.39), namely

0 or A or ; or
TYrT) _ T YA T Y AU T uu
m (G da > Crmgy T2, WU 0a

= —ZGXAFXAFIQA +2G5,(— FXAFIQU ~Ta FIQA) —2G{yl Ay FIQU

+G

= —2Myon (4.42)
upon using eqsl (4.82)-(4.133).
Eventually, we thus obtain
%detFT = 2(detm ") qa- (4.43)

The fair simplicity of this final expression can be undergtfrom the gauge invariance of the propagator
T
G, We recall that) 8 is a BRST invariant field. As such, it must hold ttf%% =0. From

Gl = — dgr*} & Ghydetlm = —Tha, (4.44)
we get
Gﬁu%detrT = —%*, (4.45)
or
9 gerrT = L OTaa_ idetrTﬁ = 2(detl "M Toa (4.46)
oo Gly 0o i da KA

which implies the desired result that the zeroegdeftl ) area-independent.

It is interesting to mention that the zeroes of tH&l atrix '™ will in general produce poles in all
propagatorsG,,, G, andG[),. As the poles of the latter are gauge invariant per constmicthis
observation already strongly suggests that the zeroEipWill also be gauge invariant, even without
using the Nielsen identities. However, we were unable te auit on general grounds cancellations of
possible gauge variant zeroes of dewith compensating zeroes in the elementt bf This necessitated
the lengthy Nielsen analysis just presented.
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4.2 Renormalization group invariance of the pole masses

Another well-known interesting property, next to the gapgeameter independence, is the renormaliza-
tion group invariance of the pole mass(es). We first pointloat def’ " will also obey the renormaliza-
tion group equation if T does as

d T _ T 7,9 1

u@detr = —detl"'Tr (G p@r . (4.47)

The pole masses were identified as the zeroes df,det working around such zerd?, with detr ™ =
p? + m2)R(p?), we immediately get from the foregoing equation that

dnt

Ozudiudetl'T = R(p?) e

(4.48)

hence

dnt
du

(4.49)

4.3 Removing the Gribov horizon

Formally, the Gribov horizon can be removed from the theoyysettingy? = 0, in which case the
auxiliary fields can be integrated out, yielding a unity. W& = 0, the action[(4.19) reduces to the
BRST invariant massive model studied recently in [29], nigme

Sﬂ:S(M+S:P+S[+§/d4XA{}aAB’a' (4.50)

This model can be regarded as the generalization to ther looe@ariant gauges of the effective massive
model introduced in the Landau gaugelin![55, /56, 57]. Theegffory — 0, one is back to the case of
standard Yang-Mills theory, albeit supplemented with asnaan, leading to

FIF=0GIr=0 _ 1 (4.51)
so that eq.[(4.16) becomes
0 1 - @ (4.52)
da GA(VZ 0) GXE\VZ:()) ’ '

which is nothing but the usual Nielsen identity of the staddéang-Mills theory [43].

Let nown? denote the pole of the transverse part of the gluon propadato

1
- —0. (4.53)
(Y2 0)(p2) -
Thus, the Nielsen identity (4.52) becomes
d 1
AA pP=—m¢

implying that the pole mass? of the transverse component of the gluon propag@ﬁ;&\‘zzo) is indepen-
dent of the gauge paramet®f43]. The pole mass in the Landau gauge version ofleq.|(4.58)studied
in [58,/59].
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4.4 Nielsen identities and Landau-Khalatnikov-Fradkin transformations

As we have just shown for the GZ case, and as it is well knowneimegal, Nielsen identities are a
direct consequence of the underlying BRST invariance oftteery and they allow to control the gauge
parameter dependence of gauge variant quantities.

There is another class of relations, commonly known as tmelda-Khalatnikov-Fradkin (LKF) trans-
formations, that dictate how to connesfpoint functions in different gauges [60,/61]. At the level
of practical usage, the LKF transformation are usuallyrigisd to the QED fermion propagator, see
[62,163,64] for useful references. Nonetheless, also ®QRD case, some progress has recently been
made for the quark propagator up to a certain order in peatio theory, see [65].

In [66], it was observed that, at least for the QED case, th€& tidnsformations can be derived from
BRST invariance as well, by introducing an auxiliary Stusbkrg field. This strengthens our intuition
that Nielsen identities and LKF transformations should ddated in some way, as at the end, both are
consequences of BRST invariance. Schematically, a Nigtiiity for a connected two-point function

in the absence of mixing looks like

0

whereM corresponds to the analogue of the composite operator@borefunctionlyqe. Then we can

write 5
which can be solved for by
G(a) _ G(Gzo)efg da’M(a’) )

(o %
This is an LKF transformation, in the sense that the two-piinction ata is given by transforming the
two-point function ati = 0 (Landau gauge) with some suitable form faeor.

Let us discuss this here in some more detalil for the Abelige,cee. QED, and the photon propagator.
For QED, we do not even need to worry about the Gribov probMfa.thus consider the Abelian limit
of the extended gauge fixing (3116) and add the Dirac actiothfofermions, so that

Soeo = [ d' (R +iboyAu+ 517 — i Xcb— e+ Gy)

Considering next the Abelian limit of the STI for the generat® of connected Green functions,
eqg. [3.30) and acting on it with the appropriate test operate get for the Nielsen identity of the
photon propagator

0
da (AuAV>k = kuzchw(kz%
where
Zea )= [ (@A)
k
is the Abelian analogue dfyqa, but now immediately at the connected level.

In the Abelian case, this form fact@ca, (k?) can be computed in a closed form, simce andb are free
fields. Indeed, aécc) = k—lz and(bA)) = % it follows that

b)  kky
5o (A =T (4.55)
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Indeed, there is only the photon-fermion vertex, so

(J@en) =5 = (feven | [ @an) .

If bis contracted witth,, we obtain exactly eql_(4.55) since we then get a factodsatito ( [ (cb)c) and
S_o{J(PAY)™), but the latter expression equals 1 since it matches to thetqp) propagatok self-
energy. If we contradb with an A from a vertex, we trivially get zero since this amounts to ataction
between a momentum and a (conserved) Dirac current.

The final resolution of the photon Nielsen identity, ¢g. B,3s nothing else but the photon LKF trans-
formation. The solution to the ed. (4155) is, after integratexactly given by the LKF relation

<AuAv> & <AuAv> k“ Y

Of course, in the non-Abelian case, the situation gets momapdjcated, since the r.h.s. of the gluon
Nielsen identity depends diyoa, Which cannot be evaluated in an exact form anymore. Thismatsans
that the corresponding LKF relation, obtainable by intéggathe Nielsen identity, can no longer be
written in a closed form and one needs to resort to an appaiom This is exactly what is done, to a
few orders in perturbation theory, in [65] for the quark mgptor. We did not consider fermions in our
current paper, but needless to say also for those degreeseoloin, a Nielsen identity can be derived.
For the standard perturbative result, see for example [A#.r.h.s. of the fermion Nielsen identity will
depend or"y g, andlyk g with K andK the sources coupled to the BRST variationspcdnd (. Also
these can no longer be evaluated in closed form in the QCD tas&ED case was studied in depth
in [63,[64]. We will report on the non-Abelian generalizatiof the LKF transformations and the link
with the Nielsen identities for both gluon and fermiospoint functions in more detail elsewhere, with
attention for the manifest renormalizability of the constion. Let us end this subsection by mentioning
that, in principle, one can also derive LKF transformatifmsthe mixed propagators in the GZ case by
integrating the corresponding Nielsen identities, whicleg a way to “move” from the Landau gauge
results to those of a general linear covariant gauge.

5 The gauge invariant correlation function (Al(k)A)(—k))

Having constructed the gauge invariant configuraﬂ@nwe are naturally led to introduce the two-point
correlation function

(AR (K)ALP(—k) = 6ab(6w k“kv>a><k2>, 5.1)

which, as a consequence of the transversalit&[pt:an be parametrized in terms of a single form factor
D(k?). Due to the gauge invariance A!j the correlation functiorf(511) is BRST invariant. As suith,
has the pleasant property of being independent of the gaargengtex [2], namely

90D (k?)
da

Due to its BRST invariant and-independent nature, the two-point correlation functiédl) can be
employed to investigate non-perturbative aspects of theryh A first important property encoded in the
expression(511) follows from the following identity

(AR ATP(y)) = (AR OOAR (y))azo = (A2 (0AR (1)) s (53
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whereS andauis the action[(3.11) in the Landau gauge, ae= 0, 0,A} = 0, namely

Sandau= Srm+ Sepeo + oz 5 (5.4)
with
S, = / dx (1% 0,8 + Eaa“Dﬁb(A)cb> . (5.5)
Let us give a closer look at the correlation functl(d\ﬂ ¢ b(y)>gLandau, le.

hb —SLandau
(AT OIAT (Y)) S anses = JB®) ?‘ED(q,ﬁ”&(aﬁf ) (5.6)

where[D®] is a short hand notation for integration over all fields
[D®] = DA,DED$ D, ,Dwy,Dwy,DbDcDeDT . (5.7)
Integrating out the fieldét, b, c, c), we get

auAp (0pA,) det(—0 - D)Au (X )AU’b(y) —(Srm+Sez)
alJAp 0,A,)det(—0-D)e —(Srm+Sez) )

<An~a<x>AU7b<y>>sLandau (5.8)

Employing eqs.[(A.20),[(A.21) of Appendix]A, the equatidpm{] = 0 can be solved iteratively fdg®
yielding
1 . g oAl . g 0A i g|0A
= 01 A G| 11 0T 5 g
so that we can eventually integrate 0§&robtaining

/ID®]8(3,A,) det(—a - D) AL (X)AY2(y) e~ (SrmtSez)

GA} +0(A%) , (5.9)

ha hb
' ’ = ~ 5.10
whereA[} is now given by, see ed. (A.22) of Appendix A,
1 Ou 0A god
h M
Al—l = Au azauaA |ga2 |:Av,av 02:| —|§? |:0A a OA]
4 oig [Ap azaA] +id [ ~50A ZEGA} +O(AY . (5.11)

An important remark is in order here. When evaluatmguA[}) by means of the foregoing expression,
we tacitly assumed that this is the unique solution makimgattyument of thé-function zero. Exactly
because the actioBsz implements the conditios/2°(A") > 0, we are ensured that there are no other
solutions connected via infinitesimal gauge transfornmatio theﬁ{} constructed vid (5.11), as this would
require M3 (A") to have zero modes. This is the best one can achieve in thingomt, as excluding
other equivalent field configurations would boil down to kiregvhow to restrict in Landau gauge to the
fundamental modular region, the region of absolute, ratia@n local, minima of the functiondla[u]
[4.16,[7], see AppendikJA. Unlike the case of the Gribov reginreq. [1.1), a local and renormalizable
action implementing the restriction to the fundamental miadregion is, so far, not at our disposal. In
[67] an argument was given why averages over the Gribov negiould coincide with those over the
fundamental modular region, but this is an unsettled issee[68].
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Due to the presence in ed. (5110) of the delta funcb@d)A,), all terms containing a divergen@&
vanish, namely

[[D®] 3(3,A,) det(—a - D) AR () ANP (y) e~ (Srm+Ssz(A)
J/DP]3(0,A,) det(—o- D)e— St Soz(A)
/D ] (0 uAu )det(—ad-D Aﬁ(X)AB —(Srm+Sez(A))
[ [D®|3(3,A,) det(—a - D) e (Srw+Soz(A))

= (RXOAY))s, (5.12)

whereS stands for the standard Gribov-Zwanziger action in the bargauge, namely

(AL AY (1)) 8 e

§ = s+ [ d¥(ib*,A0+ EDPA)
+ / ' (— MDA+ MDA+ g FO(AZOT ) ). (5.13)
Finally, we end up with the important result
(APOA(Y)) = (AAYW))s, (5.14)

which gives us a practical way of computing the correlW(x)AC’b(y)>. More precisely, the BRST in-
variant correlation functlor(lAﬂa( X)Ay b, b(y)) is obtained by evaluating the gluon propage(@(x)AS(y))
in the Landau gauge with the standard Gribov-Zwanzigeoa&i eq. [5.18).

Furthermore, from eq[(5.14) and from the previous resulthenindependence from of the poles of
the transverse part of the gluon propaga(mﬁ(k)AB(—k)g = P (K)(A3(K)AD(—K))s , it immediately

follows that the poles o(Aﬂa( KA, hb( k)) are precisely those ofA2(k)AS(—k)), providing thus a
BRST invariant andi-independent way of characterizing the nature of the etxaita in the gluon sector
within the class of the renormalizable linear covariantggsu

Another useful quantity which can be introduced by meanspfession[(5.]1) is the so called temporal
Schwinger correlator’(t), defined fort > 0 as

1 s> .
D=2 [ dpe™o(p), (5.15)

which is per construction manifestly BRST invariant anéhdependent. It is known that the violation
of the positivity of the temporal correlatdr_(5]15) is ditlgcrelated to the impossibility of giving a
physical particle interpretation to the BRST invariantretation function[(5.11) via a Kallen-Lehmann
spectral representation. Suppose in fact that the fornorfatk?) admits a Kallen-Lehmann spectral
representation, namely

D(K) = /: ot % , (5.16)

wherep(1) > 0 denotes the spectral density aiadhe threshold. For the temporal correlafor (5.15), one

gets
1 1 eft\/f
Ct)y==/ dt 1).
0)=3 ] dv=—=p®
Therefore, ifC(t) < 0 for somet > 0, then the spectral densipyft) cannot be positive everywhere. This
implies that the correlation functiob (5.1) cannot be gi@eparticle interpretation in terms of physical

(5.17)
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excitations belonging to the spectrum of the theory, asanavhich is expected to be physically realized
in the confining regime of the theory. For some more discasalmutC(t), see for instance [69, 70].

It is worth underlining that, actually, the violation of tpesitivity of the temporal correlator is taken as
a strong evidence for gluon confinement, from both analytiod numerical lattice studies of the gluon
propagator. We see therefore that the introduction of theetadion function[(5.11) enables us to attach
a BRST invariant meaning to the positivity violation, thgbuthe BRST invariant temporal correlator
(5.15). Of course, from ed._(5.14), it follows

C(t)s= C(t)a=o = C(V)s, (5.18)

giving us a way of checking the positivity violation. In ptie, eq.[(5.IB) tells us that in order to check
the positivity violation of the temporal correlatg(t)s in the linear covariant gauges, it suffices to look
at the temporal correlataf(t)z in the Landau gauge, evaluated with the standard GribowaZigar
actionS.

It can be easily checked that positivity is violated for thigimal Gribov propagatori (3.36). A contour

integration argument gives
At

Ct)= % cos<g+ %t) , (5.19)

where we have sét* = 2¢g°Ny*. Evidently, the r.h.s. of(5.19) is not positive for &llThis was observed
before in[14].

Using the same method, a closed expression(fa) can also be obtained for the refined propagator
(4.21), but the final expression is not very instructive adreff the positivity violation with the naked
eye. Though, this can be easily checked numerically usittigdainput for the dynamical mass scales
obtained from fitting expressioh (4)21), upon a suitablébglaescaling related to a choice of MOM
renormalization scale, se€e [71]72] 73, 74]. The positwityation can also be directly checked from the
lattice viewpoint, either via_(t) [17,/24] or directly from the spectral function [23].

6 Application: evaluation of the temporal correlator C(t) for SU(2) Yang-
Mills-Higgs theory

Consider the action

S=SN +SP+Sz+ S 6.1)
;\%gs stands for the Yang-Mills action in presence of a Higgs fialthie fundamental representation
$1ipe— [ o ( 3RaRA + (Olo)" (Oke) +5 (@o—v?)7) 62

where o . o
D¢ =0u¢ —ig(T*)" AP, (6.3)

is the covariant derivative witiT2} being the generators of the gauge gr@&i(N) in the fundamen-
tal representation of the gauge gro8p(N), [T2 TP = ifa3°°T¢ For simplicity, we will work in the
“freezing” limit A — oo.

To discuss the behaviour of the temporal correldior (5.18ran make direct use of the results already
obtained in[[75]. In particular, according {o [75], the paggators of the theory in the plag,v) turn out
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to be characterised by a separation kne 1/2, wherea denotes the dimensionless quantity
2,2
a=— 9% (6.4)
1— 321{2)
apel

wherellis the energy scale of the dimensional regularization irMiSescheme. For generality, we will
discuss the propagator and temporal correlator behavoralifvalues of the parametar However, as
discussed in[75], the analysis leading to the regulfl (6as)anly be trusted for very small or very large
values ofa, related to a balancing between size of the leading logs angling constanty?.

Following [75], we have the following regions:

e fora> 1/2, the form factorD(k?) is of the Yukawa type, i.e.

1

2\
@(k)_ku%vz.

(6.5)

The temporal correlatof (t)s is always positive. In this region the usual Higgs mecharteskes
place. The BRST invariant correlation functidn (5.1) hademicand transparent meaning: it
describes the three polarizations of a massive gauge béswadteristic of the Higgs phase . We
notice that, for sufficiently weak couplingf and high values of the Higgs VEV, the parameter
a will always be bigger than /2, and sufficiently big to trust the leading order analysisspnted
in [75]. Moreover, as pointed out in_[75], the restrictionttee Gribov region in the functional
integral is not needed.

e for 1/e < a< 1/2, the form factorD(k?) turns out to be the sum of two Yukawa terms, namely

2y _
D) k+m kZ+m’ (6.6)
where
B 1 92V2 g4v4 492 B 1 g2V2 g4v4 492
= §<T+ T—?“J‘)’ mz_§<7_ T3
__m o
-{]:Jr - mi_mga Tf_mi_mga (67)

and the parametdt is proportional to the Gribov parametgrbeing given by the gap equation
[75]

3¢

/ 2m)A T gzvzq2+ 75 =1. (6.8)
Due to the negative nature of the residfie, we cannot give a physical interpretation dtk?)
in terms of excitations. Though, we underline that, due ®BIRST invariant nature ab(k?),
the two Yukawa modes corresponding to the masgeandn? cannot be analysed separately. In
other words, BRST invariance requires that the two mcm?gsandmz_ belong to a unique, BRST
invariant, quantity: 2 (k?). Let us look thus at the temporal correlaibft)s in this region. A
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simple calculation gives

I N A A I
s = n/_mdpe <p2+mi p2+m€>
_ Frgma (1_ iﬂe(mm)t>

my Frm
- ﬁe”mt (1_ m_e("Lfm)t) (6.9)
my my

Sincem_ < m,, the quantity(l— %e‘(mf"m)t) will become negative for sufficiently large
ie.
t> T jogM (6.10)
m.—m. T m
Therefore, the temporal correlatér (6.9) in the intermiediagion Ye < a < 1/2 cannot be given
a consistent particle interpretation. Here, the effecth@iGribov copies start to become relevant,

forbidding a particle interpretation of the BRST invariaotrelator [(5.11).

finally, we have the region foa < 1/e, in which the two masse&mi,rrﬁ) become complex
conjugate and the form factad(k?) is of the Gribov type, displaying complex poles. Again, in
this region, the temporal correlatgl(t)s becomes negative. As usual, this can be interpreted as
the confining sector. This region is realized for sufficigriérge values of?/small values of/,
thereby corresponding to a strong coupling regime. Forceffily smalla, we can again trust the
approximation made in [75].

Summarizing, we have presented evidence that, for suffigismall or large values o4, there
are 2 different regions, with Higgs-like or confining-likegperties, which are now identified in
a BRST invariant fashion. We are, unfortunately, unableaiaccetely characterize the possible
phase transition between these two different sectors shécritical” values ofa are beyond
validity of the used expansion. From this perspective, iildde interesting to study the behaviour
of the propagatotA"A"), in a lattice setting.

As our propagator is explicitty BRST invariant, we can tryrt@ake a connection with recent
works [76, 77| 78] which introduced a gauge invariant péxtion theory, based on the ideas of
[79,[80], see alsa [81]. Part of the underlying motivatiotthis Fradkin-Shenker papér [82] which
contains a proof thBtno local observable can discriminate between a Higgs or miogfiphase.
Said otherwise, it is always possible to connect the Higgsamfining “phase” in an analytical
way. Other part of the motivation is that of constructing pgsical spectrum of the theory. For
such a goal, one should consider, as appropriate for a gaegeyt gauge invariant bound state
operators and identify their poles to get a gauge invariaatdption of massive gauge bosons, see
[76],[77 ] 78 79, 80]. Coming back to the Fradkin-Shenkerltesne might expect that the ensuing
spectrum can then “interpolate” in an analytical way betw#® expected Higgs and confined
behaviour of the physical degrees of freedom. The gaugeiamtgperturbation theory comes in
about when, after choosing a gauge with associated VEV &Hibgs fieI, one can expand the
connected two-point function of the gauge invariant bousadesoperator in terms of a two-point

8At least for the lattice version of tH8U(2) gauge-fundamental Higgs model without gauge fixing. We agvare of any

continuum version of their results.

9Giving the Higgs a VEV is a gauge dependent operation. Indkticé formulation, the VEV automatically vanishes.
Evidently, this does not mean there can be no Higgs phenamén@ther means that the gauge invariant spectrum is not as
simply identified as in the gauge variant perturbative se@tti

23



function of the standard gauge dependent fields and higler gcattering contributions. In our
case, we can do a similar thing, i.e. we can write, in any gauge

(AN, = (AT + (O(A%)) (6.11)

based on the expansion (5.10). The supersdrigtill means that only the transverse sector is
considered. If the BRST invariant I.h.s. correlation fumecthas (a fortiori gauge invariant) poles,
so should the r.h.s. have, indicating that the (gauge dm&hpromgato(AA)E must also have
gauge invariant poles.

7 Conclusion

In this paper, we have exploited the recently introduded[28], BRST invariant, nonperturbative gen-
eralization of the linear covariant gauges, which takes pdrtial account the Gribov ambiguity which
hampers the standard Faddeev-Popov gauge fixing procekhaiaks to the (local) BRST invariance and
ensuing Slavnov-Taylor identity, we were able to derivetao$dlielsen identities for the mixed propa-
gators of this novel Gribov-Zwanziger formulation of thedar covariant gauge, which encompasses the
widely studied Landau gauge as a special case. A major rasthle level of the transverse form factor
of the connected gluon propagator is a proof, based on thisé¥iedentities, of the gauge parameter
independence of its (complex conjugate) poles. As a bymtodiuour analysis, we digressed to some
extent how the Landau-Khalatnikov-Fradkin transformagiare related to the Nielsen identities.

In addition, we also paid attention to the connected twavpfainction of a transverse, BRST invariant
gluon field,A{], that enters the formulation. Despite the fact that it gomds to an infinite series of
increasingly nonlocal composite operators, it can be leghdith the tools of local quantum field theory
after the introduction of suitable auxiliary fields. Its tpoint function was shown to be exactly equal to
the standard gluon propagator in the Landau gauge, and thieedielsen identity proof, thereby linking
its gauge invariant poles to those of the gluon propagataninlinear covariant gauge. We then used
this BRST invariant correlator to study, in a now gauge iramrfashion, the violation of positivity in
the gluon sector. Although not a proof of confinement, thisden by many practitioners in the field
as an effective consequence of confinement: there are novabkeelementary gluon excitations in the
asymptoticS-matrix spectrum.

Of course, next to the elementary gluon degrees of freedsousised in this paper, QCD also implies
confined, or at least unobservable, quarks and ghosts. timconing work, we will extend the tools
and results of this paper to the quark and ghost sector. Eaguhrk sector, we have in mind a BRST
invariant extension of the preliminary Landau gauge modidsussed in[83, 84, 85, B6] that describe
a quark propagator with a complex conjugate pole struciaraccordance with lattice fits reported in
the literature([8)7,_88]. In general, a relatively simplegraetrization of the quark propagator in terms
of pairs of complex conjugate, and thus unphysical, polesl®en proven to be rather successful to
grasp key features of the QCD spectrum in terms of solutiétiseoBethe-Salpeter equations, let us for
instance refer to [1%, 16, 89,190,/191) 92].

One might be worried about the occurrence of complex poleslation to unitarity, the latter at least
for the bound state spectrum of the “complex” constituentéis is an open question and certainly
deserves further study. That unitarity is not necessaribdds with complex poles in propagators can be
appreciated from [93], where an explicit recipe, motivatgdhe Lee-Wick model[94, 95] was given to
ensure unitarity (and Lorentz covariance), order by ordex Feynman diagrammatic expansion, when
pairs of complex conjugate poles are introduced into thertheMore recent applications and insights
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can be found in[[96, 97]. This might be an interesting avemuexplore in relation with the complex
poles induced by the Gribov-Zwanziger quantization scheme

In the ghost sector, the Nielsen identities and its possiblesequences may in particular shed some
light on the ghost propagator in the linear covariant gauge for the gauge parametar= 0 has a
quite different behaviour compared to the distinct 0 (Landau gauge) case, at least as reported in
[28,[38/39].

We want to stress that understanding key nonperturbatatiries of then-point functions of QCD for

a general class of gauges is more than just of academic shtefdesen-point functions are the key
ingredients in constructing the QCD spectrum, see[[15, 8999,92]. So far, such analyses have been
restricted to Landau gauge for reasons of simplicity. Hawvedepending on the specific approaches,
a lot of modeling, in the form of Ansatze for the interactioertices, are required. Frequently, even
the input propagators are modelled with desirable, siyiplf forms (see e.gl [98] for an overview and
relevant references). As such, the true gauge invariantaatf the results becomes clouded, since the
Ansatze are usually rather specific to Landau gauge andiemgid to reproduce certain features of the
experimental spectrum. A truly ab initio computation of @ED spectrum should display a clean gauge
invariant nature, ultimately controlled by the BRST in@arte when a gauge fixing is employed. Our
work, in addition to that of other approaches as those ¢fi38537/ 38| 39, 40, 41, 42] can be seen as a
first, small step towards this, as at first one needs to uradetghe two-point functions.

One final piece of our future effort should be dedicated to eenfarmal aspect of BRST invariant gauge
field theories: to what extent can the new BRST invarianc@é@turrent nonperturbative formulation of
the linear covariant gauges be used to introduce a well-etkfifobal BRST charge acting on the Hilbert
space, and if so, is it still possible to derive a confinemeiteron in the sense of ensuring the absence
of colored asymptotic states from the physical BRST stat®iewlogy? Almost needless to say, we are
referring here to a reanalysis of the Kugo-Ojima confinenceierion [99,100].
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A Properties of the functional fa[ul.

In this Appendix we recall some useful properties of the fiomal fa[u]

falu] = Tr / d*x AIAL = Tr / d*x <uTAuu+ éu*dw) <uTAuu + iguTauu> : (A1)
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For a given gauge field configurati@y, fa[u] is a functional defined on the gauge orbit%f Let 4 be

||A||2:Tr/d4xAuAu:%/d4xAﬁAﬁ< +o0, (A.2)

and let be the space of local gauge transformatiarssich that the Hilbert norrfjutaul| is finite too,
namely

||ufou||? = Tr/d“x (ufdyu) (u'auu) < 4o (A.3)

As discussed in [26,/6, 7] 8], the functiong[u] achieves its absolute minimum on the gauge orbit of
Ay. This proposition means that there exists@ U such that

ofalh] = 0, (A.4)
Sl > 0, (A.5)
f/_\[h] < f/_\[U], Yue U. (A.6)

The operatoAZ,,, is thus given by

Koy = minTTr / A% ALAY = fafh] . (A7)
u
Let us give a look at the two conditioris (A.4) and (A.5). Tolaatedfa[h] andd?fa[h] we st
v = hd9® = hd9*T* (A.8)
1
a Tbh| _ifabcoc aTh) _ —xab
[T ,T]_uf T Tr(TT>_26 , (A.9)

wherew is an infinitesimal Hermitian matrix and we compute the Imaad quadratic terms of the
expansion of the functiondl[v] in power series ofo. Let us first obtain an expression &)

A = VIAV+ iavTapv =g IOANI® |- iae“g‘*’aueig‘*’ : (A.10)
To orderw?,
A= Ao S AR igeal+ s zszn
+ Ia iga,w— 9—22 (000) 00— %ooauoo+ 9% wd,w > +O(w (A.11)
so that
Aﬁ:Aﬂ+ig[Aﬂ,w]+%2[[w,Aﬂ] w] — auw+|g[w 0,00 +O(w*) (A.12)

A little algebra leads subsequently to

fAlM = fal] +2Tr / d'x (wd,AL) —Tr / d*xwd,Dy(AM W+ O(w) , (A.13)

10The case of the gauge groG)(N) is considered here.
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so that
dfaln] = 0 = 9A} =0,
&fal] > 0 = —9,Dy(A") > 0. (A.14)

The set of field configurations fulfilling conditions_(Al14)e. those defining relative minima of the
functional fa[u], belong to the Gribov regiof, with

Q = {Au0,A.=0and — d,Dy(A) > 0} . (A.15)

Imposing transversality vié“A[} =0, allows to solve foh = h(A) in a power series ify,. We start from

Al =h'Ah+ éhTauh , (A.16)
with
h=g9¢ = 9r'T* (A.17)
Let us expandh in powers of@
h=1+igp— —<p2+O @) . (A.18)

From eq.[(A.16) we have
AL = Au+i9[A @+ g7 eA0— —Apcp2 - —‘PZAu Oup+ |9[(p,6 W +0(¢%) . (A.19)
Thus, conditiord, ATl = 0, gives
*¢ = OuA+ig0uAL, ¢ +iglAL, 0,0 + IP0LALP+ P@LAL+ G PAL0LP
g o o g g o5
- jauAu‘PZ ~ 5 AP — S AuPOLP— 0L PPA, — = GO PA, — E‘PZauAu

+ ig[(p, 92q) + O(¢) . (A.20)
This equation can be solved iteratively fpas a power series i,
1 . g 0A i g [0A 3
0= ﬁauAqul? [aA, 02] 62 [Au Ou 02} 552 [?’OA] +O(A%), (A.21)
which can be simplified to
Ou ig |1 1 oy [0
h u \Y
AL = A 020A+|g {Au ﬁaA] > [azaA,auﬁaA} +|ga2 {OZOA A\,}
o, [0A
+ 'gaz [ﬁ,aA] +O(A%). (A.22)

The transverse field given in e§. (R.2) is, as expected, gaugeant. Let us illustrate this under a gauge
transformation

OAL = —0,W+ig[A,, )] . (A.23)
Up to the ordeiO(g?) we get
5a = —dywtid [a A, 9w ] g [ava—lzaA, w] +O(d). (A.24)
So,
g, = —0y (co— iJ B’g‘,wD +0(g?), (A.25)

from which the gauge invariance Aﬂ is established.
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B Gauge parameter independence of the pole mass GﬁAz a slightly dif-
ferent reasoning

We provide here a second proof of the independence from thgegparametea of the poles of the
transverse componei@}, of the gluon propagator. In a quantum field theory which dogtshave
mixed propagators of different fields, e@. (3.29) impliesseamtially, that the Rl two-point function

is the inverse of the connected two-point function. An immta consequence of this fact is that the
poles of the connected two-point function coincide with fieeoes of the correspondingp lLtwo-point
function. Therefore, in this simple case, if one is able tvprthat the zero/pole of thé”?l/connected
two-point function is independent of the gauge paramef¢ne independence from the gauge parameter
of the pole/zero of the connecte@iltwo-point function is a direct consequence.

Nevertheless, as long as theories with mixed propagatersoasidered, these properties are lost and one
has to be more careful in the analysis of the gauge indepead#ithe poles/zeroes of the connect&d/1
two-point functions. In the present case, we are dealing thi¢ Gribov-Zwanziger action which has a
large number of fields and of non-trivial mixed propagateee [1[ 2]. However, we were able to derive
the identity [4.12) which tells us that if @ = —n? the two-point function™ },(m?) vanishes and the
insertionF;QA is not too singular, then the zend is independent oft, namely,

o

o =
Although thea-independence of the zero BKA is controlled by[(4.12), one could be interested on the
a-independence of the poles of the connected two-point iom& . For this, let us assume that the
pole of GJ, is located ap? = —nm? and we split our analysis in two cases:

0. (B.1)

1. The pole 0fG4, does not coincide with the pole &f3,:

In this case, we consider ef]. (4.5) at the pale= —n?, namely
[ AA(ME)GAA(ME) + 2NT 3 (M) Gg (ME) = —1. (B.2)

By assumptionGA,(mE) = e while G, (M) < w. Sincel 15(m) andl A, (ME) are not singular
at the polep? = —n?, a property which can be shown in a way completely similarasedelow
eq. [4.37), the only way the Lh.s. of ef.(B.2) could prodadmite value is by setting } ,(m?) =
0. This implies that the pole dB,EA coincides with the zero oIfXA and by eq.[(B11) it isa-
independent.

2. The pole 0fG4, is the same as the pole Gfy,:
For this situation, we consider the following expression

rXﬁAiGXKq,ee(nf) + rlﬁq’idelidq)ee(mf) + rXﬁqjidG%idq)ee(mf) = Oa (B3)
which is derived from eq[(3.29) by settigg= A}, ¢ = be and applying the transverse projector
on Lorentz indices. To proceed with the analysis, we sublditihe argument in two cases:

e The pole ofG',

st

As showed in eq[(3.32), the two-point functioﬁ%c%be andGL ... area-independent, as
A PV

pLiobe
a consequence of BRST invariance. As such, their poles sp@ahdependent and, thus,

is the same as the pole chdq)be and/or the pole quTTcdq)be;
ATV ATV
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the pole ofG!, cote
GAa Hence, the pole dB}, is independent ofr.
e The pole ofG'. .. is different from the poles oB,

is alsoa-independent. By assumption, this pole is the same as tleeogbol

Ac¢be ¢cd¢be ande)‘cdq)be
In this caseG¢cd¢be(m§) < o0 andG(Fc%be(rnf) < o0, Also, rqu)cd(mz) and rquicd(mz) are not
singular. SlncéBAcq)be(mf) = o0, the only way the |hs of eq_(B.3) can produce a finite value

is if F}ﬁAﬁ(mf) 0. Assuming thus thdt,oa(m?) is not too singular, we conclude that is
a-independent.

In summary, if the zeroes d)'fXA are gauge parameter independent then the pol@ip&lso are.

C Theinsertion erA

As already underlined, the Nielsen identify (4.12) ensuhesgauge parameter independence of the
zeroes off }, if the msertlonl'xQA is not too singular at the zero. In this Appendix we work out an
expression for such insertion in terms of connected Greectifans which turns out to be quite helpful
for investigating the nature 6t} ,.

To begin with, we write the insertion as

o o )

"o =y 503(x) 3A3(y) €D

and we have to act with the transverse projector on_eql (Erdm eq.[(3.25), we write

0 8 5 [ [u o & 8z
= gy g gy (2 %99 = oy g sty ©2

Applying the functional chain rule, we obtain

_ 6J| X1 0z°
rXQﬁA{g = aX 5Qa </ Z 5AB 0Ji(x1) )
B / 83 (x1) 6z°¢  FJ(x) > z°
12\ Bxem05REy) S0a)  BOR)BAE(y) X% (X0
& (x1) & z° N 8Ji(x1) 5°z°
OXIAY(y) 0QE(X)8J (1)  BAD(y) XBQ(X)8Ji(x1)

(C.3)

Applying the the transverse project@y (p) = <6w P ) and taking into account color invariance

and ghost number conservation, expresdion| (C.3) reduces to
Moge = 5 ] 850% [y 0 UHLDRC00AS 00)]
2 e (Cab DR < X650 | (C.4)
with (...)c denoting the connected correlation functions. Passin@toiér space gives
r QaA\?(p) = ZFTAvAo(p) G(TDﬁeCe)Af,(_p) Ir ¢ck(p) G(-I-Dﬁece)q)%k(_p) ’ (C5)
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whereg Diece A0( p)andGr (Dgece cljck(p) are the Fourier transformations of the transverse compsiéihe

connected Green functlor@(sf d* c¥(t)bd (t))Df}ece(x)Ag(xl)ﬁ and(( [ d* ¢¥(t)bd (t))Dﬁece(x)d)gk(xl»I.
From the decompositions

xazar(P) = B (D) 3a(P?)
rLgAgp = C'Pvcr(p) AP )

= 3 Bo( ) (pz)’

)
)
p) = P*Ro(P)Map(P7)
)
) = faCkTuo() ¢(p2) (C.6)

T
g(DﬁeCe)¢8k
eqg. [C.4) becomes

Moa(P®) = —'—ZFXA( P*) Goga(P?) —INT A (P?) Gloee (PP » (C.7)

which is useful for a better understanding of the Nielsemiitye (4.12).
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