1,408 research outputs found

    Who calls the tune? Participation and partnership in research

    Get PDF
    yesThis paper explores issues of partnership and participation in research and evaluation, drawing on the experiences of evaluating a move from hostel accommodation to independent supported living for people with mental health difficulties or learning disabilities. The service change project involved a partnership between a local authority and a housing association with over 300 people moving into their own tenancies in newly-built flats and bungalows. The accompanying evaluation was designed on a model of service user participation and action research and was specifically concerned to explore the impact of the changes on people’s actual or perceived social inclusion into local communities. Ten service user and carer researchers, some of whom were directly involved in the move from hostel to independent living, were recruited and worked with ‘professional’ researchers to examine both the process and the outcomes of the move. The work will be viewed through the insights offered by feminist, transformative and participatory approaches to research. The ‘positioning’ of the researcher in relation to boundaries and the construction of the ‘other’ will be considered, emphasising an approach grounded in reflexivity and an acknowledgement of the complex ethical issues involved. A key feature of this study has been the negotiation involved between a complex change project and a participatory evaluation design. Learning points from the work so far will also be considered in terms of their wider application in future evaluations of complex change projects that involve multiple stakeholders.Published online Nov 2012

    Multi-vehicle Control in a Strong Flowfield with Application to Hurricane Sampling

    Full text link
    A major obstacle to path-planning and formation-control algorithms in multi-vehicle systems are strong flows in which the ambient flow speed is greater than the vehicle speed relative to the flow. This challenge is espe-cially pertinent in the application of unmanned aircraft used for collecting targeted observations in a hurricane. The presence of such a flowfield may inhibit a vehicle from making forward progress relative to a ground-fixed frame, thus limiting the directions in which it can travel. Using a self-propelled particle model in which each particle moves at constant speed relative to the flow, this paper presents results for motion coordination in a strong, known flowfield. We present the particle model with respect to inertial and rotating reference frames and provide for each case a set of con-ditions on the flowfield that ensure trajectory feasibility. Results from the Lyapunov-based design of decentralized control algorithms are presented for circular, folium, and spirograph trajectories, which are selected for their potential use as hurricane sampling trajectories. The theoretical results are illustrated using numerical simulations in an idealized hurricane model. Nomenclature N Number of particles in the system k Particle index k = 1,..., N rk Position of k th particle with respect to inertial frame r̃k Position of k th particle with respect to rotating fram

    Kinetic Studies on Photodeposition of Polydiacetylene Thin Film from Solution: Preliminary Determination of the Rate Law

    Get PDF
    Preliminary kinetic studies were undertaken on the photodeposition of thin films of a polydiacetylene derivative of 2-methyl-4-nitroaniline from monomer solutions onto quartz substrates. Solutions of the monomer, DAMNA, in 1,2-dichloroethane at various concentrations were irradiated at 364 nm using an argon-ion laser at several intensities. It was found that the rate of polydiacetylene (PDAMNA) film photodeposition varies linearly with UV light intensity and as the square root of monomer concentration

    Gravitational Effects on the Morphology and Kinetics of Photodeposition of Polydiacetylene Thin Films From Monomer Solutions

    Get PDF
    The goal of this proposed work is to study gravitational effects on the photodeposition of polydiacetylene thin films from monomer solutions onto transparent substrates. Polydiacetylenes have been an extensively studied class of organic polymers because they exhibit many unusual and interesting properties, including electrical conductivity and optical nonlinearity. Their long polymeric chains render polydiacetylenes readily conducive to thin film formation, which is necessary for many applications. These applications require thin polydiacetylene films possessing uniform thicknesses, high purity, minimal inhomogeneities and defects (such as scattering centers), etc. Also, understanding and controlling the microstructure and morphology of the films is important for optimizing their electronic and optical properties. The lack of techniques for processing polydiacetylenes into such films has been the primary limitation to their commercial use. We have recently discovered a novel method for the formation of polydiacetylene thin films using photo-deposition from monomer solutions onto transparent substrates with UV light. This technique is very simple to carry out, and can yield films with superior quality to those produced by conventional methods. Furthermore, these films exhibit good third-order properties and are capable of waveguiding. We have been actively studying the chemistry of diacetylene polymerization in solution and the photo-deposition of polydiacetylene thin films from solution. It is well-known that gravitational factors such as buoyancy-driven convection and sedimentation can affect chemical and mass transport processes in solution. One important aspect of polydiacetylene thin film photodeposition in solution, relevant to microgravity science, is that heat generated by absorption of UV radiation induces thermal density gradients that under the influence of gravity, can cause fluid flows (buoyancy-driven convection). Additionally, changes in the chemical composition of the solution during polymerization may cause solutal convection. These fluid flows affect transport of material to and from the film surface and thereby affect the kinetics of the growth process. This manifests itself in the morphology of the resulting films; films grown under the influence of convection tend to have less uniform thicknesses, and can possess greater inhomogeneities and defects. Specifically, polydiacetylene films photodeposited from solution, when viewed under a microscope, exhibit very small particles of solid polymer which get transported by convection from the bulk solution to the surface of the growing film and become embedded. Even when carried out under conditions designed to minimize unstable density gradients (i.e., irradiating the solution from the top), some fluid flow still takes place (particles remain present in the films). It is also possible that defect nucleation may be occurring within the films or on the surface of the substrate; this, too, can be affected by convection (as is the case with crystal growth). Hence films grown in 1-g will, at best, still possess some defects. The objective of this proposal is to investigate, both in 1-g and in low-g, the effects of gravitational factors (primarily convection) on the dynamics of these processes, and on the quality, morphology, and properties of the films obtained

    Self-adjoint Lyapunov variables, temporal ordering and irreversible representations of Schroedinger evolution

    Full text link
    In non relativistic quantum mechanics time enters as a parameter in the Schroedinger equation. However, there are various situations where the need arises to view time as a dynamical variable. In this paper we consider the dynamical role of time through the construction of a Lyapunov variable - i.e., a self-adjoint quantum observable whose expectation value varies monotonically as time increases. It is shown, in a constructive way, that a certain class of models admit a Lyapunov variable and that the existence of a Lyapunov variable implies the existence of a transformation mapping the original quantum mechanical problem to an equivalent irreversible representation. In addition, it is proved that in the irreversible representation there exists a natural time ordering observable splitting the Hilbert space at each t>0 into past and future subspaces.Comment: Accepted for publication in JMP. Supercedes arXiv:0710.3604. Discussion expanded to include the case of Hamiltonians with an infinitely degenerate spectru

    Recent Advances in Photonic Devices for Optical Computing and the Role of Nonlinear Optics-Part II

    Get PDF
    The twentieth century has been the era of semiconductor materials and electronic technology while this millennium is expected to be the age of photonic materials and all-optical technology. Optical technology has led to countless optical devices that have become indispensable in our daily lives in storage area networks, parallel processing, optical switches, all-optical data networks, holographic storage devices, and biometric devices at airports. This chapters intends to bring some awareness to the state-of-the-art of optical technologies, which have potential for optical computing and demonstrate the role of nonlinear optics in many of these components. Our intent, in this Chapter, is to present an overview of the current status of optical computing, and a brief evaluation of the recent advances and performance of the following key components necessary to build an optical computing system: all-optical logic gates, adders, optical processors, optical storage, holographic storage, optical interconnects, spatial light modulators and optical materials

    Photonic and Opto-Electronic Applications of Polydiacetylene Films Photodeposited from Solution and Polydiacetylene Copolymer Networks

    Get PDF
    Polydiacetylenes (PDAS) are attractive materials for both electronic and photonic applications because of their highly conjugated electronic structures. They have been investigated for applications as both one-dimensional (linear chain) conductors and nonlinear optical (NLO) materials. One of the chief limitations to the use of PDAs has been the inability to readily process them into useful forms such as films and fibers. In our laboratory we have developed a novel process for obtaining amorphous films of a PDA derived from 2-methyl4-nitroaniline using photodeposition with Ultraviolet (UV) light from monomer solutions onto transparent substrates. Photodeposition from solution provides a simple technique for obtaining PDA films in any desired pattern with good optical quality. This technique has been used to produce PDA films that show potential for optical applications such as holographic memory storage and optical limiting, as well as third-order NLO applications such as all-optical refractive index modulation, phase modulation and switching. Additionally, copolymerization of diacetylenes with other monomers such as methacrylates provides a means to obtain materials with good processibility. Such copolymers can be spin cast to form films, or drawn by either melt or solution extrusion into fibers. These films or fibers can then be irradiated with UV to photopolymerize the diacetylene units to form a highly stable cross-linked PDA-copolymer network. If such films are electrically poled while being irradiated, they can achieve the asymmetry necessary for second-order NLO applications such as electro-optic switching. On Earth, formation of PDAs by the above mentioned techniques suffers from defects and inhomogeneities caused by convective flows that can arise during processing. By studying the formation of these materials in the reduced-convection, diffusion-controlled environment of space we hope to better understand the factors that affect their processing, and thereby, their nature and properties. Ultimately it may even be feasible to conduct space processing of PDAs for technological applications
    • …
    corecore