43 research outputs found

    Micro- and nanoparticle generation during nanosecond laser ablation: correlation between mass and optical emissions

    Get PDF
    The particulate emission during nanosecond ablation of gold targets was investigated at various fluences (10-100 Jcm(-2)) and vacuum levels (0.05-750 Torr). Atomic emission spectra were acquired during the ablation process and post-mortem characterization of particle spatial distribution was performed using scanning electron microscopy. The discussion of the results in the context of existing theoretical models permitted the identification of four distinct mass removal mechanisms. While the presence, shape and intensity of atomic emission lines is a telltale of the nanoparticle formation process, the fluctuations of the emission signal over a number of laser shots was linked to the production of microscopic debris

    Open-atmosphere structural depth profiling of multilayer samples of photovoltaic interest using laser-induced plasma spectrometry

    Get PDF
    The present work aims to assess Laser-Induced Plasma Spectrometry (LIPS) as a tool for the characterization of photovoltaic materials. Despite being a well-established technique with applications to many scientific and industrial fields, so far LIPS is little known to the photovoltaic scientific community. The technique allows the rapid characterization of layered samples without sample preparation, in open atmosphere and in real time. In this paper, we assess LIPS ability for the determination of elements that are difficult to analyze by other broadly used techniques, or for producing analytical information from very low-concentration elements. The results of the LIPS characterization of two different samples are presented: 1) a 90 nm, Al-doped ZnO layer deposited on a Si substrate by RF sputtering and 2) a Te-doped GaInP layer grown on GaAs by Metalorganic Vapor Phase Epitaxy. For both cases, the depth profile of the constituent and dopant elements is reported along with details of the experimental setup and the optimization of key parameters. It is remarkable that the longest time of analysis was ∼10 s, what, in conjunction with the other characteristics mentioned, makes of LIPS an appealing technique for rapid screening or quality control whether at the lab or at the production line

    ARXPS analysis of a GaAs/GaInP heterointerface with application in III-V multijunction solar cells

    Full text link
    In this contribution, angle-resolved X-ray photoelectron spectroscopy is used to explore the extension and nature of a GaAs/GaInP heterointerface. This bilayer structure constitutes a very common interface in a multilayered III-V solar cell. Our results show a wide indium penetration into the GaAs layer, while phosphorous diffusion is much less important. The physico-chemical nature of such interface and its depth could deleteriously impact the solar cell performance. Our results probe the formation of spurious phases which may profoundly affect the interface behavior

    XPS as Characterization Tool for PV: From the Substrate to Complete III-V Multijunction Solar Cells

    Get PDF
    This contribution aims to illustrate the potential of the X-ray photoelectron spectroscopy (XPS) technique as a tool to analyze different parts of a solar cell (surface state, heterointerfaces, profile composition of ohmic contacts, etc). Here, the analysis is specifically applied to III-V multijunction solar cells used in concentrator systems. The information provided from such XPS analysis has helped to understand the physico-chemical nature of these surfaces and interfaces, and thus has guided the technological process in order to improve the solar cell performance

    Analysis of the surface state of epi-ready Ge wafers

    Get PDF
    The surface state of Ge epi-ready wafers (such as those used on III-V multijunction solar cells) supplied by two different vendors has been studied using X-ray photoemission spectroscopy. Our experimental results show that the oxide layer on the wafer surface is formed by GeO and GeO2. This oxide layer thickness differs among wafers coming from different suppliers. Besides, several contaminants appear on the wafer surfaces, carbon and probably chlorine being common to every wafer, irrespective of its origin. Wafers from one of the vendors show the presence of carbonates at their surfaces. On such wafers, traces of potassium seem to be present too

    Case study in failure analysis of accelerated life tests (ALT) on III-V commercial triple-junction concentrator solar cells

    Get PDF
    In this work the failure analysis carried out in III-V concentrator multijunction solar cells after a temperature accelerated life test is presented. All the failures appeared have been catastrophic since all the solar cells turned into low shunt resistances. A case study in failure analysis based on characterization by optical microscope, SEM, EDX, EQE and XPS is presented in this paper, revealing metal deterioration in the bus bar and fingers as well as cracks in the semiconductor structure beneath or next to the bus bar. In fact, in regions far from the bus bar the semiconductor structure seems not to be damaged. SEM images have dismissed the presence of metal spikes inside the solar cell structure. Therefore, we think that for these particular solar cells, failures appear mainly as a consequence of a deficient electrolytic growth of the front metallization which also results in failures in the semiconductor structure close to the bus bars

    Frequent and simultaneous epigenetic inactivation of TP53 pathway genes in acute lymphoblastic leukemia

    Get PDF
    Aberrant DNA methylation is one of the most frequent alterations in patients with Acute Lymphoblastic Leukemia (ALL). Using methylation bead arrays we analyzed the methylation status of 807 genes implicated in cancer in a group of ALL samples at diagnosis (n = 48). We found that 154 genes were methylated in more than 10% of ALL samples. Interestingly, the expression of 13 genes implicated in the TP53 pathway was downregulated by hypermethylation. Direct or indirect activation of TP53 pathway with 5-aza-29-deoxycitidine, Curcumin or Nutlin-3 induced an increase in apoptosis of ALL cells. The results obtained with the initial group of 48 patients was validated retrospectively in a second cohort of 200 newly diagnosed ALL patients. Methylation of at least 1 of the 13 genes implicated in the TP53 pathway was observed in 78% of the patients, which significantly correlated with a higher relapse (p = 0.001) and mortality (p,0.001) rate being an independent prognostic factor for disease-free survival (DFS) (p = 0.006) and overall survival (OS) (p = 0.005) in the multivariate analysis. All these findings indicate that TP53 pathway is altered by epigenetic mechanisms in the majority of ALL patients and correlates with prognosis. Treatments with compounds that may reverse the epigenetic abnormalities or activate directly the p53 pathway represent a new therapeutic alternative for patients with ALL

    LMO2 expression reflects the different stages of blast maturation and genetic features in B-cell acute lymphoblastic leukemia and predicts clinical outcome

    Get PDF
    BACKGROUND: LMO2 is highly expressed at the most immature stages of lymphopoiesis. In T-lymphocytes, aberrant LMO2 expression beyond those stages leads to T-cell acute lymphoblastic leukemia, while in B cells LMO2 is also expressed in germinal center lymphocytes and diffuse large B-cell lymphomas, where it predicts better clinical outcome. The implication of LMO2 in B-cell acute lymphoblastic leukemia must still be explored. DESIGN AND METHODS: We measured LMO2 expression by real time RT-PCR in 247 acute lymphoblastic leukemia patient samples with cytogenetic data (144 of them also with survival and immunophenotypical data) and in normal hematopoietic and lymphoid cells. RESULTS: B-cell acute lymphoblastic leukemia cases expressed variable levels of LMO2 depending on immunophenotypical and cytogenetic features. Thus, the most immature subtype, pro-B cells, displayed three-fold higher LMO2 expression than pre-B cells, common-CD10+ or mature subtypes. Additionally, cases with TEL-AML1 or MLL rearrangements exhibited two-fold higher LMO2 expression compared to cases with BCR-ABL rearrangements or hyperdyploid karyotype. Clinically, high LMO2 expression correlated with better overall survival in adult patients (5-year survival rate 64.8% (42.5%-87.1%) vs. 25.8% (10.9%-40.7%), P= 0.001) and constituted a favorable independent prognostic factor in B-ALL with normal karyotype: 5-year survival rate 80.3% (66.4%-94.2%) vs. 63.0% (46.1%-79.9%) (P= 0.043). CONCLUSIONS: Our data indicate that LMO2 expression depends on the molecular features and the differentiation stage of B-cell acute lymphoblastic leukemia cells. Furthermore, assessment of LMO2 expression in adult patients with a normal karyotype, a group which lacks molecular prognostic factors, could be of clinical relevance

    Radon (222Rn) outgassing in San Juan volcanic tubes during the Cumbre Vieja eruption 2021, and preliminary values in the new volcanic tubes

    Get PDF
    Comunicación oral presentada en el 1st European Meeting on Geomicrobiology of volcanic caves. días 2-3 de marzo de 2023 celebrado en la Casa de la Ciencia-CSIC de SevillaDuring the eruption at Cumbre Vieja ridge (La Palma, Canary Islands, 2021) a radon (222Rn) detector (CORENTIUM Pro alpha particles counter) was emplaced inside the “Las Palomas” lava tube (San Juan eruption, 1949). In addition, a CO2 meter logger was emplaced to determine relationships between the 2021 eruption and radon plus CO2 inner fluxes. There is a geostructural relationship between the 1949 and 2021 eruptions, probably connected by a previous fault, shown the volcanic vents’ alignment trending NW-SE. In October 2021, the radon and CO2 loggers were moved to the upper part of the lava tube, in the San Juan volcanic vent (Llano del Banco hollow dyke). Once the eruption ended (in early 2022) both loggers were placed in one newly formed lava tube, and data will be collected in February 2023. Preliminary results show daily average radon values ranging between 2 - 9 Bq/m3, although sporadic peaks of about 270 and 650 Bq/m3 were recorded related to volcano-tectonic earthquakes and volcanic intensity. In general, basaltic eruptions of alkaline affinity show low radon values due to the low concentration in the magma body of uranium and related chemical elements (Th, Ra, etc.). Geochemical analysis of emitted lavas shows a U concentration of about 1 to 5 ppm (μg/g) and Th 9.5 ppm. Summer values of Rn increased up to 3 KBq/m3, related to the climate conditions instead of volcanic activity.This study was funded by the project CSIC 20223PAL002 “Investigación Geológica de la Erupción de 2021 en Cumbre Vieja” and partially by the project FAMRAD (PID2020-113407RB-I00): Geochemical modeling of seismic prediction from endogenous gas emission (222Rn, CO2, CH4), and earthquakes by using radioactive caves and boreholes in the Alhama de Murcia fault.N
    corecore