751 research outputs found

    First-principles study of adsorption, diffusion, and charge stability of metal adatoms on alkali halide surfaces

    Get PDF
    In this work we have performed first-principles calculations based on the spin-polarized density-functional theory for the adsorption and diffusion of Au, Ag, and Pb atoms on NaCl(001), KCl(001), and KBr(001) surfaces. We consider also the influence of adatom charge on the adsorption and diffusion. In order to characterize the different systems we explicitly calculate charge transfer between surface and adatom and consider the relative stability of the various charge states. Our results show that in general, apart from positively charged systems, the adatoms are weakly bound to the surface via orbital polarization and ionic interactions, and relatively little charge transfer occurs. Au and Ag adatoms are highly mobile on all surfaces, although they can be pinned by removal of an electron. In contrast, Pb adatoms are fairly immobile, and their mobility increases upon charging. Analysis of the charge stability suggests that Ag offers the potential of charge controlled mobility on insulators.Peer reviewe

    Nanoscale density fluctuations in swift heavy ion irradiated amorphous SiO2

    Get PDF
    We report on the observation of nanoscale density fluctuations in 2 μm thick amorphous SiO₂ layers irradiated with 185 MeV Au ions. At high fluences, in excess of approximately 5 × 10¹² ions/cm², where the surface is completely covered by ion tracks, synchrotron small angle x-ray scattering measurements reveal the existence of a steady state of density fluctuations. In agreement with molecular dynamics simulations, this steady state is consistent with an ion track “annihilation” process, where high-density regions generated in the periphery of new tracks fill in low-density regions located at the center of existing tracks.The authors acknowledge the Australian Research Council and the Australian Synchrotron Research Program for financial support and thank the staff at the ANU Heavy Ion facility for their continued technical assistance. O.P., F.D., and K.N. acknowledge financial support from the Academy of Finland under its Centre of Excellence program as well as the OPNA project, and grants of computer capacity from CSC

    Tibial Fractures in Alpine Skiing and Snowboarding in Finland : A Retrospective Study on Fracture Types and Injury Mechanisms in 363 Patients

    Get PDF
    Background and Aim: Alpine skiing and snowboarding share the hazards of accidents accounting for tibial fractures. The aim of this study was to evaluate the fracture patterns and mechanisms of injury of tibial fractures taking place in downhill skiing and snowboarding. Materials and methods: All patients with tibial fracture due to alpine skiing or snowboarding accident treated in four trauma centers next to the largest ski resorts in Finland were analyzed between 2006 and 2012. The hospital records were retrospectively reviewed for data collection: equipment used (skis or snowboard), age, gender, and mechanism of injury. Fractures were classified according to AO-classification. Results: There were 342 skiing and 30 snowboarding related tibial fractures in 363 patients. Tibial shaft fracture was the most common fracture among skiers (n=215, 63%), followed by proximal tibial fractures (n=92, 27%). Snowboarders were most likely to suffer from proximal tibial fracture (13, 43%) or tibial shaft fracture (11, 37%). Snowboarders were also more likely than skiers to suffer complex AO type C fractures (23% vs 9%, p Conclusion: The most important finding was the relatively high number of the tibial plateau fractures among adult skiers. The fracture patterns between snowboarding and skiing were different; the most common fracture type in skiers was spiral tibial shaft fracture compared to proximal tibial fractures in snowboarders. Children had more simple fractures than adults.Peer reviewe

    Liquid Water and Interfacial, Cubic, and Hexagonal Ice Classification through Eclipsed and Staggered Conformation Template Matching

    Get PDF
    We propose a novel method based on template matching for the recognition of liquid water, cubic ice (ice Ic), hexagonal ice (ice Ih), clathrate hydrates, and different interfacial structures in atomistic and coarse-grained simulations of water and ice. The two template matrices represent staggered and eclipsed conformations, which are the building blocks of hexagonal and cubic ice and clathrate crystals. The algorithm is rotationally invariant and highly robust against imperfections in the ice structure, and its sensitivity for recognizing ice-like structures can be tuned for different applications. Unlike most other algorithms, it can discriminate between cubic, hexagonal, clathrate, mixed, and other interfacial ice types and is therefore well suited to study complex systems and heterogeneous ice nucleation.Peer reviewe

    High-resolution scanning force microscopy of gold nanoclusters on the KBr (001) surface

    Get PDF
    In this study we use a combination of dynamic scanning force microscopy experiments and first-principles simulations to study the imaging process of gold nanoclusters adsorbed on the (001) surface of KBr. In previous experiments atomic resolution was readily obtained on the KBr substrate. However, it was not possible to resolve atoms within the clusters themselves. This correlates with imaging simulations we present here using several different probable tip models: measurable contrast was readily achieved on the KBr surface and on the gold (001) surface, but simulations on the clusters demonstrated poor contrast for all tips. We further consider the role of cluster charging in the tip-surface interaction, and the role that surface defects play in the properties of adsorbed clusters.Peer reviewe

    The so-called dry laser cleaning governed by humidity at the nanometer scale

    Get PDF
    Illumination with single nanosecond pulses leads to the detachment of silica particles with 250nm radii from siliconsurfaces. We identify two laser-energy dependent cleaning regimes by time-of-flight particle-scattering diagnostics. For the higher energies, the ejection of particles is produced by nanoscale ablation due to the laser field enhancement at the particle-surface interface. The damage-free regime at lower energy is shown to be governed by the residual water molecules, which are inevitably trapped on the materials. We discuss the great importance that the humidity plays on the cleaning force and on the adhesion in the experiments.Peer reviewe

    Imaging the real shape of nanoclusters in scanning force microscopy

    Get PDF
    A quantitative comparison between experiment and theory is given for the constant height mode imaging of metal nanoclusters in dynamic scanning force microscopy. We explain the fundamental mechanisms in the contrast formation with the help of the system Pd/MgO(001). The comparison shows that the shape and size of nanoclusters are precisely imaged due to the sharpness of the tip’s last nanometer. This quantitative comparison proves our previously proposed model for the contrast formation.Peer reviewe

    Simulating atomic force microscopy imaging of the ideal and defected TiO2 (110) surface

    Get PDF
    In this study we simulate noncontact atomic force microscopy imaging of the TiO2 (110) surface using first-principles and atomistic methods. We use three different tip models to investigate the tip-surface interaction on the ideal surface, and find that agreement with experiment is found for either a silicon tip or a tip with a net positive electrostatic potential from the apex. Both predict bright contrast over the bridging oxygen rows. We then study the interaction of this tip with a bridging oxygen vacancy on the surface, and find that the much weaker interaction observed would result in vacancies appearing as dark contrast along the bright rows in images.Peer reviewe

    Atomic dynamics in evaporative cooling of trapped alkali atoms in strong magnetic fields

    Get PDF
    We investigate how the nonlinearity of the Zeeman shift for strong magnetic fields affects the dynamics of rf field induced evaporative cooling in magnetic traps. We demonstrate for the 87-Rb and 23-Na F=2 trapping states with wave packet simulations how the cooling stops when the rf field frequency goes below a certain limit (for the 85-Rb F=2 trapping state the problem does not appear). We examine the applicability of semiclassical models for the strong field case as an extension of our previous work [Phys. Rev. A 58, 3983 (1998)]. Our results verify many of the aspects observed in a recent 87^{87}Rb experiment [Phys. Rev. A 60, R1759 (1999)].Comment: 9 pages, RevTex, eps figures embedde
    corecore