14 research outputs found

    A short term benefit for outcrossing in a Daphnia metapopulation in relation to parasitism

    No full text
    Because host–parasite interactions are often specific to the host and parasite genotype, it may be important whether a host reproduces by selfing or outcrossing. The latter is associated with higher genetic diversity among the offspring and may reduce parasite success. Here, we test whether outbred offspring of Daphnia magna have an advantage over selfed offspring in the presence of a parasite transmitted from mothers to offspring. Using outdoor mesocosms, we set up monoclonal and polyclonal host populations of D. magna infected with a prevalence of 100% with the horizontally and vertically transmitted microsporidian parasite Octosporea bayeri. These populations diapaused after sexual reproduction and hatchlings were screened for signs of O. bayeri. Parasite prevalence was 98.9% for hatchlings from the monoclonal treatment, but only 85.2% among the hatchlings from the polyclonal populations, indicating a short-term benefit for outbreeding. This benefit occurs, we hypothesize, not owing to inbreeding depression, but because the vertically transmitted parasite is less able to establish itself in the relatively new genetic environment of the outbred offspring, as compared to the more stable environment when transmitted to selfed offspring. To quantify the fitness consequences of this 14% prevalence difference, we studied the within-season epidemiology of O. bayeri, using an epidemiological model. We then examined whether descendants of outbred offspring produce more resting eggs than the descendants of selfed offspring. The data and our model show that Daphnia which are uninfected at the beginning of the growth season have a large advantage when the entire season is considered. Our data support the Red Queen hypothesis which states that in the presence of coevolving parasites, outbreeding is favoured in the host

    Data from: Biological invasion modifies the co-occurrence patterns of insects along a stress gradient

    No full text
    Compressed file containing 7 archives: environmental and biological data from invaded and non-invaded areas (original dataset); environmental and biological data from invaded area (to be used for data analysis along with the R script); environmental and biological data from non-invaded area (to be used for data analysis along with the R script); physiological and biological traits of corixids and their categories (to be used for data analysis along with the R script); affinity values of species for each trait category (to be used for data analysis along with the R script), physiological and biological traits of corixids and their categories (original dataset); document with detailed archives description.Biological invasions have become one of the most important drivers of biodiversity loss and ecosystem change world-wide. However, it is still unclear how invasions may interact with local abiotic stressors, which are expected to increase as global change intensifies. Furthermore, we know little about the response to biological invasions of insects, despite their disproportionate contribution to global animal biodiversity. The aim of the present work is to investigate the impact of an invasive aquatic insect on the co-occurrence patterns of native species of insects along a salinity gradient, and determine which assembly rules are driving these patterns. First, we characterised the habitat specialisation and functional niches of each species from physiological and biological traits, respectively, and their degree of overlap. Second, we used field data to compare the co-occurrence patterns of native and invasive species in invaded and non-invaded areas of southern Iberia and northern Morocco. Finally, we tested if habitat filtering or niche differentiation assembly rules mediate their co-occurrence. In non-invaded areas, habitat filtering drives habitat segregation of species along the salinity gradient, with a lower contribution of niche differentiation. The presence of the invasive insect modifies the distribution and co-occurrence patterns of native species. In invaded areas, niche differentiation seems to be the main mechanism to avoid competition among the invasive and native species, enabling coexistence and resource partitioning. The combined study of functional niche similarity and abiotic stressor tolerance of invasive and native species can improve our understanding of the effects of invasive species along abiotic stress gradients. This approach may increase our capacity to predict the outcomes of biological invasion in a global change context.Peer reviewe
    corecore