32 research outputs found
Crystallization and preliminary X-ray study of haem-binding protein from the bloodsucking insect Rhodnius prolixus
Rhodnius haem-binding protein (RHBP) from the bloodsucking insect Rhodnius prolixus, a 15 kDa protein, has been crystallized using polyethylene glycol as a precipitant. X-ray diffraction data have been collected at a synchrotron source. The crystals belong to the space group P4(1(3))2(1)2, with unit-cell parameters a = b = 64.98, c = 210.68 Angstrom, and diffract beyond 2.6 Angstrom resolution.57686086
Blood Meal-Derived Heme Decreases ROS Levels in the Midgut of Aedes aegypti and Allows Proliferation of Intestinal Microbiota
The presence of bacteria in the midgut of mosquitoes antagonizes infectious agents, such as Dengue and Plasmodium, acting as a negative factor in the vectorial competence of the mosquito. Therefore, knowledge of the molecular mechanisms involved in the control of midgut microbiota could help in the development of new tools to reduce transmission. We hypothesized that toxic reactive oxygen species (ROS) generated by epithelial cells control bacterial growth in the midgut of Aedes aegypti, the vector of Yellow fever and Dengue viruses. We show that ROS are continuously present in the midgut of sugar-fed (SF) mosquitoes and a blood-meal immediately decreased ROS through a mechanism involving heme-mediated activation of PKC. This event occurred in parallel with an expansion of gut bacteria. Treatment of sugar-fed mosquitoes with increased concentrations of heme led to a dose dependent decrease in ROS levels and a consequent increase in midgut endogenous bacteria. In addition, gene silencing of dual oxidase (Duox) reduced ROS levels and also increased gut flora. Using a model of bacterial oral infection in the gut, we show that the absence of ROS resulted in decreased mosquito resistance to infection, increased midgut epithelial damage, transcriptional modulation of immune-related genes and mortality. As heme is a pro-oxidant molecule released in large amounts upon hemoglobin degradation, oxidative killing of bacteria in the gut would represent a burden to the insect, thereby creating an extra oxidative challenge to the mosquito. We propose that a controlled decrease in ROS levels in the midgut of Aedes aegypti is an adaptation to compensate for the ingestion of heme
Characterization of a Gene Family Encoding SEA (Sea-urchin Sperm Protein, Enterokinase and Agrin)-Domain Proteins with Lectin-Like and Heme-Binding Properties from Schistosoma japonicum
BackgroundWe previously identified a novel gene family dispersed in the genome of Schistosoma japonicum by retrotransposon-mediated gene duplication mechanism. Although many transcripts were identified, no homolog was readily identifiable from sequence information.Methodology/Principal FindingsHere, we utilized structural homology modeling and biochemical methods to identify remote homologs, and characterized the gene products as SEA (sea-urchin sperm protein, enterokinase and agrin)-domain containing proteins. A common extracellular domain in this family was structurally similar to SEA-domain. SEA-domain is primarily a structural domain, known to assist or regulate binding to glycans. Recombinant proteins from three members of this gene family specifically interacted with glycosaminoglycans with high affinity, with potential implication in ligand acquisition and immune evasion. Similar approach was used to identify a heme-binding site on the SEA-domain. The heme-binding mode showed heme molecule inserted into a hydrophobic pocket, with heme iron putatively coordinated to two histidine axial ligands. Heme-binding properties were confirmed using biochemical assays and UV-visible absorption spectroscopy, which showed high affinity heme-binding (KD = 1.605×10?6 M) and cognate spectroscopic attributes of hexa-coordinated heme iron. The native proteins were oligomers, antigenic, and are localized on adult worm teguments and gastrodermis; major host-parasite interfaces and site for heme detoxification and acquisition.ConclusionsThe results suggest potential role, at least in the nucleation step of heme crystallization (hemozoin formation), and as receptors for heme uptake. Survival strategies exploited by parasites, including heme homeostasis mechanism in hemoparasites, are paramount for successful parasitism. Thus, assessing prospects for application in disease intervention is warranted
Condições de trabalho e uso profissional da voz de cantores de bandas de baile
OBJETIVO: caracterizar as condições de trabalho e de uso profissional da voz de cantores de banda de baile. MÉTODOS: são sujeitos 24 cantores de banda de baile (13 homens e 11 mulheres) das seis bandas de baile da cidade de Piracicaba (SP). O levantamento de dados foi feito por meio de observação in loco, questionário e entrevista. Os dados do questionário receberam tratamento estatístico: Teste de Qui-quadrado e Teste Exato de Fisher. As respostas das entrevistas foram transcritas para Análise de Conteúdo. RESULTADOS: cantores de bandas de baile vivenciam dificuldades e precariedades nas condições de infraestrutura, suporte, apoio, acomodação e alimentação nos locais dos eventos, que conferem risco à saúde vocal. A maioria percebe mudanças na voz durante ou após o baile. Os hábitos, comportamentos e cuidados com a voz, bem como o aquecimento vocal, são realizados de madeira inadequada e insuficiente. Apesar disto, evidenciam-se vários aspectos positivos no trabalho, como o apoio social e ambiente descontraído, tranquilo, cooperativo e motivador, além da percepção positiva do trabalho como fonte de aprendizado, experiência, prazer, satisfação e realização. As condições de trabalho se mostram desfavoráveis ao uso profissional da voz e à promoção da saúde. A análise estatística dos dados do questionário não mostrou associação significante ao nível de significância de 0,05. CONCLUSÃO: a pesquisa contribuiu para o conhecimento da realidade de trabalho dos cantores de bandas de baile nas relações com o uso profissional da voz e saúde vocal e pode subsidiar futuras ações de intervenção e de assessoria fonoaudiológica junto à categoria, na perspectiva da promoção da saúde do trabalhador
The Bartonella quintana Extracytoplasmic Function Sigma Factor RpoE Has a Role in Bacterial Adaptation to the Arthropod Vector Environment
Bartonella quintana is a vector-borne bacterial pathogen that causes fatal disease in humans. During the infectious cycle, B. quintana transitions from the hemin-restricted human bloodstream to the hemin-rich body louse vector. Because extracytoplasmic function (ECF) sigma factors often regulate adaptation to environmental changes, we hypothesized that a previously unstudied B. quintana ECF sigma factor, RpoE, is involved in the transition from the human host to the body louse vector. The genomic context of B. quintana rpoE identified it as a member of the ECF15 family of sigma factors found only in alphaproteobacteria. ECF15 sigma factors are believed to be the master regulators of the general stress response in alphaproteobacteria. In this study, we examined the B. quintana RpoE response to two stressors that are encountered in the body louse vector environment, a decreased temperature and an increased hemin concentration. We determined that the expression of rpoE is significantly upregulated at the body louse (28°C) versus the human host (37°C) temperature. rpoE expression also was upregulated when B. quintana was exposed to high hemin concentrations. In vitro and in vivo analyses demonstrated that RpoE function is regulated by a mechanism involving the anti-sigma factor NepR and the response regulator PhyR. The ΔrpoE ΔnepR mutant strain of B. quintana established that RpoE-mediated transcription is important in mediating the tolerance of B. quintana to high hemin concentrations. We present the first analysis of an ECF15 sigma factor in a vector-borne human pathogen and conclude that RpoE has a role in the adaptation of B. quintana to the hemin-rich arthropod vector environment