24 research outputs found

    Pretreatment hemoglobin level as a prognostic factor in patients with locally advanced head and neck squamous cell carcinoma

    Get PDF
    AimEvaluate pretreatment hemoglobin values as a prognostic factor in patients with locally advanced head and neck squamous cell carcinoma treated with concurrent chemoradiotherapy.BackgroundAnemia is one of the most prevalent laboratory abnormalities in oncological disease. It leads to a decrease in cellular oxygen supply, altering radiosensitivity of tumor cells and compromising therapeutic outcomes.Materials and MethodsRetrospective evaluation of patients with HNSCC treated with cCRT. Primary and secondary endpoint was to evaluate the correlation of Hb levels (≥12.5g/dL o

    Global Retinoblastoma Presentation and Analysis by National Income Level.

    Get PDF
    Importance: Early diagnosis of retinoblastoma, the most common intraocular cancer, can save both a child's life and vision. However, anecdotal evidence suggests that many children across the world are diagnosed late. To our knowledge, the clinical presentation of retinoblastoma has never been assessed on a global scale. Objectives: To report the retinoblastoma stage at diagnosis in patients across the world during a single year, to investigate associations between clinical variables and national income level, and to investigate risk factors for advanced disease at diagnosis. Design, Setting, and Participants: A total of 278 retinoblastoma treatment centers were recruited from June 2017 through December 2018 to participate in a cross-sectional analysis of treatment-naive patients with retinoblastoma who were diagnosed in 2017. Main Outcomes and Measures: Age at presentation, proportion of familial history of retinoblastoma, and tumor stage and metastasis. Results: The cohort included 4351 new patients from 153 countries; the median age at diagnosis was 30.5 (interquartile range, 18.3-45.9) months, and 1976 patients (45.4%) were female. Most patients (n = 3685 [84.7%]) were from low- and middle-income countries (LMICs). Globally, the most common indication for referral was leukocoria (n = 2638 [62.8%]), followed by strabismus (n = 429 [10.2%]) and proptosis (n = 309 [7.4%]). Patients from high-income countries (HICs) were diagnosed at a median age of 14.1 months, with 656 of 666 (98.5%) patients having intraocular retinoblastoma and 2 (0.3%) having metastasis. Patients from low-income countries were diagnosed at a median age of 30.5 months, with 256 of 521 (49.1%) having extraocular retinoblastoma and 94 of 498 (18.9%) having metastasis. Lower national income level was associated with older presentation age, higher proportion of locally advanced disease and distant metastasis, and smaller proportion of familial history of retinoblastoma. Advanced disease at diagnosis was more common in LMICs even after adjusting for age (odds ratio for low-income countries vs upper-middle-income countries and HICs, 17.92 [95% CI, 12.94-24.80], and for lower-middle-income countries vs upper-middle-income countries and HICs, 5.74 [95% CI, 4.30-7.68]). Conclusions and Relevance: This study is estimated to have included more than half of all new retinoblastoma cases worldwide in 2017. Children from LMICs, where the main global retinoblastoma burden lies, presented at an older age with more advanced disease and demonstrated a smaller proportion of familial history of retinoblastoma, likely because many do not reach a childbearing age. Given that retinoblastoma is curable, these data are concerning and mandate intervention at national and international levels. Further studies are needed to investigate factors, other than age at presentation, that may be associated with advanced disease in LMICs

    The global retinoblastoma outcome study : a prospective, cluster-based analysis of 4064 patients from 149 countries

    Get PDF
    DATA SHARING : The study data will become available online once all analyses are complete.BACKGROUND : Retinoblastoma is the most common intraocular cancer worldwide. There is some evidence to suggest that major differences exist in treatment outcomes for children with retinoblastoma from different regions, but these differences have not been assessed on a global scale. We aimed to report 3-year outcomes for children with retinoblastoma globally and to investigate factors associated with survival. METHODS : We did a prospective cluster-based analysis of treatment-naive patients with retinoblastoma who were diagnosed between Jan 1, 2017, and Dec 31, 2017, then treated and followed up for 3 years. Patients were recruited from 260 specialised treatment centres worldwide. Data were obtained from participating centres on primary and additional treatments, duration of follow-up, metastasis, eye globe salvage, and survival outcome. We analysed time to death and time to enucleation with Cox regression models. FINDINGS : The cohort included 4064 children from 149 countries. The median age at diagnosis was 23·2 months (IQR 11·0–36·5). Extraocular tumour spread (cT4 of the cTNMH classification) at diagnosis was reported in five (0·8%) of 636 children from high-income countries, 55 (5·4%) of 1027 children from upper-middle-income countries, 342 (19·7%) of 1738 children from lower-middle-income countries, and 196 (42·9%) of 457 children from low-income countries. Enucleation surgery was available for all children and intravenous chemotherapy was available for 4014 (98·8%) of 4064 children. The 3-year survival rate was 99·5% (95% CI 98·8–100·0) for children from high-income countries, 91·2% (89·5–93·0) for children from upper-middle-income countries, 80·3% (78·3–82·3) for children from lower-middle-income countries, and 57·3% (52·1-63·0) for children from low-income countries. On analysis, independent factors for worse survival were residence in low-income countries compared to high-income countries (hazard ratio 16·67; 95% CI 4·76–50·00), cT4 advanced tumour compared to cT1 (8·98; 4·44–18·18), and older age at diagnosis in children up to 3 years (1·38 per year; 1·23–1·56). For children aged 3–7 years, the mortality risk decreased slightly (p=0·0104 for the change in slope). INTERPRETATION : This study, estimated to include approximately half of all new retinoblastoma cases worldwide in 2017, shows profound inequity in survival of children depending on the national income level of their country of residence. In high-income countries, death from retinoblastoma is rare, whereas in low-income countries estimated 3-year survival is just over 50%. Although essential treatments are available in nearly all countries, early diagnosis and treatment in low-income countries are key to improving survival outcomes.The Queen Elizabeth Diamond Jubilee Trust and the Wellcome Trust.https://www.thelancet.com/journals/langlo/homeam2023Paediatrics and Child Healt

    Starch-based polymer-IL composites formed by compression moulding and supercritical fluid foaming for self-supported conductive material

    No full text
    In this work, blend of starch and poly-e-caprolactone (PCL) doped with different concentrations of 1-butyl-3-methylimidazolium acetate ([BMIM]Ac) or 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) was studied. The blends were characterized by mechanical analysis, infra-red spectroscopy (FTIR), differential scanning calorimetry (DSC) and dielectric relaxation spectroscopy (DRS), evaluating the IL doping effect. The samples were submitted to supercritical carbon dioxide foaming and the morphology of the structures was assessed. DSC shows a single glass transition and melting endotherm for foamed and unfoamed samples, undergoing no effect upon IL doping, and DRS shows increased molecular mobility for blends with higher IL concentrations, and some hindrance for lower ones. Conductivity for SPCL doped with 30% [BMIM]Cl, before and after foaming, is comparable to conductivity of the IL but exhibiting more stable conductivity values, opening doors for applications as self-supported conductive materials.The research leading to these results has received funding from Fundacao da Ciencia e Tecnologia (FCT) through the project ENIGMA - PTDC/EQU-EPR/121491/2010 and from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. REGPOT-CT2012-316331-POLARIS, PEst-C/EQB/LA0006/2013 and FEDER Marta Martins Rita Craveiro and Alexandre Paiva are grateful for financial support from Fundacao da Ciencia e Tecnologia (FCT) through the grant PTDC/EQUEPR/12191/2010/ENIGMA, BIM/PTDC/EQU-EPR/ 121491/2010/ENIGMA and SFRH/BD/47088/2008

    One-Step synthesis of PtFe/CeO2 catalyst for the Co-Preferential oxidation reaction at low temperatures

    No full text
    Active Pt-based catalysts at low temperature towards the preferential oxidation of carbon monoxide in hydrogen-rich stream reaction (CO-PROX) are of great importance for H-2-fueled fuel cells, but still remain a challenge. Herein, we propose a simple approach to synthesize a highly active Pt20Fe/CeO2 catalyst employing the borohydride reduction process. Transmission electronic microscopy revealed monodispersed 2.8 nm-Pt nanoparticles on CeO2, and the role of Fe species on the activity is discussed. The excellent CO conversion of 99.6% and CO2 selectivity of 92.3% carried out at ambient temperature meet the CO-PROX requirements for an adequate supply of hydrogen in fuel cell device. (C) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.Peer reviewe

    Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection

    No full text
    O artigo apresenta nas duas primeiras páginas nota de correção.Submitted by sandra infurna ([email protected]) on 2016-03-31T12:56:45Z No. of bitstreams: 1 andre_torres_etal_IOC_2015.pdf: 1095119 bytes, checksum: df9054f950a043553746f4758ab01c35 (MD5)Approved for entry into archive by sandra infurna ([email protected]) on 2016-03-31T15:33:31Z (GMT) No. of bitstreams: 1 andre_torres_etal_IOC_2015.pdf: 1095119 bytes, checksum: df9054f950a043553746f4758ab01c35 (MD5)Made available in DSpace on 2016-03-31T15:33:31Z (GMT). No. of bitstreams: 1 andre_torres_etal_IOC_2015.pdf: 1095119 bytes, checksum: df9054f950a043553746f4758ab01c35 (MD5) Previous issue date: 2015Universidade Federal do Rio de Janeiro. Instituto de Química. Departamento de Bioquímica. Rio de Janeiro, RJ, Brasil / Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Simon Fraser University. Biological Sciences. Burnaby, BC, Canada.Universidad Nacional de La Plata. Centro Regional de Estudios Genomicos. La Plata, Argentina / Universidad Nacional del Noroeste de Buenos Aires. Centro de Bioinvestigaciones. Pergamino, Argentina.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil.Washington University School of Medicine. McDonnell Genome Institute. St. Louis, MO, USA.Washington University School of Medicine. McDonnell Genome Institute. St. Louis, MO, USA.Universidade Federal do Rio de Janeiro. Instituto de Biologia. Departamento de Genética. Rio de Janeiro, RJ, Brasil.Universidad de la República. Facultad de Ciencias. Sección Genética Evolutiva. Montevideo, Uruguay.European Bioinformatics Institute. European Molecular Biology Laboratory. Welcome Trust Genome Campus. Hinxton, Cambridge, United Kingdom.Universidade Federal do Rio de Janeiro. Instituto de Química. Departamento de Bioquímica. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil.University of Notre Dame. Department of Biological Sciences. Notre Dame, IN.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Universidade Estadual Paulista. Departamento de Biologia. São Paulo, SP, Brasil.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Centro de Pesquisas René Rachou. Belo Horizonte, MG, Brasil.The Barcelona Institute of Science and Technology. Centre for Genomic Regulation. Barcelona, Spain / Universitat Pompeu Fabra. Barcelona, Spain.Institut de Recherche pour le Development. Centre National de la Recherche Scientifique. Laboratoire d`Evolution, Génome et Spéciation. Gif sur Yvette, France / Université Paris-Sud, Orsay, France.European Bioinformatics Institute. European Molecular Biology Laboratory. Welcome Trust Genome Campus. Hinxton, Cambridge, United Kingdom.Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Université François Rabelais. Centre National de la Recherche Sicentifique. Institut de Recherche sur la Biologie de l`Insect. Tours, France.Université Paris-Sud, Orsay, France.Universidad Nacional de La Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP, CONICET). La Plata, Argentina.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Biologia. Departamento de Genética. Rio de Janeiro, RJ, Brasil.University of Toronto. Department of Biology. Mississauga, ON, Canada.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Centro de Pesquisas René Rachou. Belo Horizonte, MG, Brasil.Universidad Nacional de La Plata. Centro Regional de Estudios Genomicos. La Plata, Argentina.Centers for Disease Control and Prevention. Entomology Branch. Division of Parasitic Diseases and Malaria. Atlanta, GA, USA.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Biologia. Departamento de Genética. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Centro de Pesquisas René Rachou. Belo Horizonte, MG, Brasil.Universidade Estadual do Norte Fluminense Darcy Ribeiro. Centro de Biociências e Biotecnologia. Laboratório de Química e Função de Proteínas e Peptídeos. Campos de Goytacazes, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil /Universidade Federal do Rio de Janeiro. Faculdade de Farmácia. Departamento de Biotecnologia Farmacêutica. Rio de Janeiro, RJ, Brasil.Centers for Disease Control and Prevention. Entomology Branch. Division of Parasitic Diseases and Malaria. Atlanta, GA, USA.The Barcelona Institute of Science and Technology. Centre for Genomic Regulation. Barcelona, Spain / Universitat Pompeu Fabra. Barcelona, Spain.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.European Bioinformatics Institute. European Molecular Biology Laboratory. Welcome Trust Genome Campus. Hinxton, Cambridge, United Kingdom.Universidad Nacional de La Plata. Centro Regional de Estudios Genomicos. La Plata, Argentina.Universidade Federal do Rio de Janeiro. Instituto de Química. Departamento de Bioquímica. Rio de Janeiro, RJ, Brasil / Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil.Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzados. oDepartment of Physiology, Biophysics and Neuroscience. Mexico City, Mexico.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Fisiologia e BIoquímica. Belo Horizonte, MG, Brasil.Florida International University. Department of Biological Sciences. Miami, FL, USA.Florida International University. Department of Biological Sciences. Miami, FL, USA.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Universidade Federal Rural do Rio de Janeiro. Instituto de Ciências Biológicas e da Saúde. Departamento de Biologia Animal. Seropédica, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.University of Toronto. Department of Biology. Mississauga, ON, Canada.Universidad Nacional de La Plata. Centro Regional de Estudios Genomicos. La Plata, Argentina.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Universidad Nacional de La Plata. Centro Regional de Estudios Genomicos. La Plata, Argentina.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil.Universidad Nacional de La Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP, CONICET). La Plata, Argentina.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal de Minas Gerais.Instituto de Ciências Biológicas. Departamento de Parasitologia. Belo Horizonte, MG, Brasil.The John Hopkins University. Bloomberg School of Public Health. Deparment of Molecular Microbiology and Immunology. Baltimore, MD, USA.Instituto Federal de Educação Ciência e Tecnologia do Rio de Janeiro. Rio de Janeiro, RJ, Brasil.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Universidade Federal do Espirito Santo. Núcleo de Doenças Infecciosas. Vitória, ES, Brasil.University of Illinois at Urbana–Champaign. Department of Entomology. Urbana, IL, USA.Instituto Federal de Educação Ciência e Tecnologia do Rio de Janeiro. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.The Barcelona Institute of Science and Technology. Centre for Genomic Regulation. Barcelona, Spain / Universitat Pompeu Fabra. Barcelona, Spain.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil./ Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Universidade Federal de Uberlândia. Faculdade de Computação. Instituto de Genética e Bioquímica. Laboratório de Bioinformática e Análises Moleculares. Uberlândia, MG, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, BrasilUniversidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, BrasilUniversity of Santiago de Compostela. Instituto de Investigaciones Sanitarias. School of Medicine– Center for Resesarch in Molecular Medicine and Chronic Diseases. Department of Physiology. Santiago de Compostela, Spain.Virginia Polytechnic Institute. Department of Biochemistry. Blacksburg, VA, USA.University of Cambridge. Deparment of Veterinary Medicine. Cambridge, United Kingdom.Simon Fraser University. Biological Sciences. Burnaby, BC, Canada.National Institutes of Health. National Institute of Allergy and Infectious Diseases. Section of Vector Biology. Rockville, MD, USA.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Estadual do Norte Fluminense Darcy Ribeiro. Centro de Biociências e Biotecnologia. Laboratório de Química e Função de Proteínas e Peptídeos. Campos de Goytacazes, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, BrasilEuropean Bioinformatics Institute. European Molecular Biology Laboratory. Welcome Trust Genome Campus. Hinxton, Cambridge, United Kingdom.Washington University School of Medicine. McDonnell Genome Institute. St. Louis, MO, USA.Washington University School of Medicine. McDonnell Genome Institute. St. Louis, MO, USA.University of Manitoba.Department of Biological Sciences. Winnipeg, MB, Canada.Centers for Disease Control and Prevention. Entomology Branch. Division of Parasitic Diseases and Malaria. Atlanta, GA, USA.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil..Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.University of Geneva Medical School. Department of Genetic Medicine and Development. Geneva 1211, Switzerland / Swiss Institute of Bioinformatics. Geneva 1211, Switzerland / Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory. Cambridge, MA, USA / The Broad Institute of MIT and Harvard. Cambridge, MA, USA.Washington University School of Medicine. McDonnell Genome Institute. St. Louis, MO, USA.Fundação Oswaldo Cruz. Instituto Leônidas e Maria Deane. Grupo de Pesquisa em Ecologia de Doenças Transmissíveis na Amazônia. AM, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Universidade Federal de Uberlândia. Faculdade de Computação. Instituto de Genética e Bioquímica. Laboratório de Bioinformática e Análises Moleculares. Uberlândia, MG, Brasil.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Ciências Biomédicas. Rio de Janeiro, RJ, Brasil.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Parasitologia. Belo Horizonte, MG, Brasil.National Institutes of Health. National Center for Biotechnology Information. Rockville, MD, USA.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Ciências Médicas. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Química. Departamento de Bioquímica. Rio de Janeiro, RJ, Brasil / Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil.Universidad Nacional de La Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP, CONICET). La Plata, Argentina.Universidade Estadual Paulista. Departamento de Biologia. São Paulo, SP, Brasil.European Bioinformatics Institute. European Molecular Biology Laboratory. Welcome Trust Genome Campus. Hinxton, Cambridge, United Kingdom.Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil.Universidade Estadual do Norte Fluminense Darcy Ribeiro. Centro de Biociências e Biotecnologia. Laboratório de Química e Função de Proteínas e Peptídeos. Campos de Goytacazes, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.The John Hopkins University. Bloomberg School of Public Health. Deparment of Molecular Microbiology and Immunology. Baltimore, MD, USA.University of Notre Dame. Department of Computer Science and Engineering. Notre Dame, IN.Universidad Nacional de La Plata. Centro Regional de Estudios Genomicos. La Plata, Argentina.Universidade Federal Rural do Rio de Janeiro. Instituto de Ciências Biológicas e da Saúde. Departamento de Biologia Animal. Seropédica, RJ, Brasil.Fundação Oswaldo Cruz. Escola Nacional de Saúde Pública Sérgio Arouca. Rio de Janeiro, RJ, Brasil.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Núcleo de Pesquisas Ecológicas de Macaé. Macaé, RJ, Brasil.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Ciências Biomédicas. Rio de Janeiro, RJ, Brasil.Washington University School of Medicine. McDonnell Genome Institute. St. Louis, MO, USA.Washington University School of Medicine. McDonnell Genome Institute. St. Louis, MO, USA.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil.Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome (∼702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect. Although immunedeficiency (IMD)-mediated immune responses were observed, R. prolixus putatively lacks key components of the IMD pathway, suggesting a reorganization of the canonical immune signaling network. Although both Toll and IMD effectors controlled intestinal microbiota, neither affected Trypanosoma cruzi, the causal agent of Chagas disease, implying the existence of evasion or tolerance mechanisms. R. prolixus has experienced an extensive loss of selenoprotein genes, with its repertoire reduced to only two proteins, one of which is a selenocysteine-based glutathione peroxidase, the first found in insects. The genome contained actively transcribed, horizontally transferred genes from Wolbachia sp., which showed evidence of codon use evolution toward the insect use pattern. Comparative protein analyses revealed many lineage-specific expansions and putative gene absences in R. prolixus, including tandem expansions of genes related to chemoreception, feeding, and digestion that possibly contributed to the evolution of a blood-feeding lifestyle. The genome assembly and these associated analyses provide critical information on the physiology and evolution of this important vector species and should be instrumental for the development of innovative disease control methods

    Genome of Rhodnius prolixus

    No full text

    A Transcript Finishing Initiative for Closing Gaps in the Human Transcriptome

    Get PDF
    We report the results of a transcript finishing initiative, undertaken for the purpose of identifying and characterizing novel human transcripts, in which RT-PCR was used to bridge gaps between paired EST clusters, mapped against the genomic sequence. Each pair of EST clusters selected for experimental validation was designated a transcript finishing unit (TFU). A total of 489 TFUs were selected for validation, and an overall efficiency of 43.1% was achieved. We generated a total of 59,975 bp of transcribed sequences organized into 432 exons, contributing to the definition of the structure of 211 human transcripts. The structure of several transcripts reported here was confirmed during the course of this project, through the generation of their corresponding full-length cDNA sequences. Nevertheless, for 21% of the validated TFUs, a full-length cDNA sequence is not yet available in public databases, and the structure of 69.2% of these TFUs was not correctly predicted by computer programs. The TF strategy provides a significant contribution to the definition of the complete catalog of human genes and transcripts, because it appears to be particularly useful for identification of low abundance transcripts expressed in a restricted set of tissues as well as for the delineation of gene boundaries and alternatively spliced isoforms
    corecore