311 research outputs found

    Linear and nonlinear optical spectroscopy of a strongly-coupled microdisk-quantum dot system

    Full text link
    A fiber taper waveguide is used to perform direct optical spectroscopy of a microdisk-quantum-dot system, exciting the system through the photonic (light) channel rather than the excitonic (matter) channel. Strong coupling, the regime of coherent quantum interactions, is demonstrated through observation of vacuum Rabi splitting in the transmitted and reflected signals from the cavity. The fiber coupling method also allows the examination of the system's steady-state nonlinear properties, where saturation of the cavity-QD response is observed for less than one intracavity photon.Comment: adjusted references, added minor clarification

    Proinflammatory Phenotype and Increased Caveolin-1 in Alveolar Macrophages with Silenced CFTR mRNA

    Get PDF
    The inflammatory milieu in the respiratory tract in cystic fibrosis (CF) has been linked to the defective expression of the cystic transmembrane regulator (CFTR) in epithelial cells. Alveolar macrophages (AM), important contibutors to inflammatory responses in the lung, also express CFTR. The present study analyzes the phenotype of human AM with silenced CFTR. Expression of CFTR mRNA and the immature form of the CFTR protein decreased 100-fold and 5.2-fold, respectively, in AM transfected with a CFTR specific siRNA (CFTR-siRNA) compared to controls. Reduction of CFTR expression in AM resulted in increased secretion of IL-8, increased phosphorylation of NF-κB, a positive regulator of IL-8 expression, and decreased expression of IκB-α, the inhibitory protein of NF-κB activation. AM with silenced CFTR expression also showed increased apoptosis. We hypothesized that caveolin-1 (Cav1), a membrane protein that is co-localized with CFTR in lipid rafts and that is related to inflammation and apoptosis in macrophages, may be affected by decreased CFTR expression. Messenger RNA and protein levels of Cav1 were increased in AM with silenced CFTR. Expression and transcriptional activity of sterol regulatory element binding protein (SREBP), a negative transcriptional regulator of Cav1, was decreased in AM with silenced CFTR, but total and free cholesterol mass did not change. These findings indicate that silencing of CFTR in human AM results in an inflammatory phenotype and apoptosis, which is associated to SREBP-mediated regulation of Cav1

    Single Mode Lasing from Hybrid Hemispherical Microresonators

    Get PDF
    Enormous attention has been paid to optical microresonators which hold a great promise for microlasers as well as fundamental studies in cavity quantum electrodynamics. Here we demonstrate a three-dimensional (3D) hybrid microresonator combining self-assembled hemispherical structure with a planar reflector. By incorporating dye molecules into the hemisphere, optically pumped lasing phenomenon is observed at room temperature. We have studied the lasing behaviors with different cavity sizes, and particularly single longitudinal mode lasing from hemispheres with diameter ∼15 μm is achieved. Detailed characterizations indicate that the lasing modes shift under varying pump densities, which can be well-explained by frequency shift and mode hopping. This work provides a versatile approach for 3D confined microresonators and opens an opportunity to realize tunable single mode microlasers

    Corporate governance and employees in South Africa.

    Get PDF
    Focusing on employees as stakeholders, we analyse corporate governance initiatives in South Africa encouraging and requiring companies to look beyond their shareholders' interests. Successive non-binding codes and the provisions of the recent Companies Act 2008 promoting this have been lauded by many commentators. The 2008 Act provides certain opportunities for employees and their representatives to exercise influence at the margins. We nevertheless question how far current corporate governance initiatives are adequate to promote employee interests. On the basis of three case studies of how companies have responded to employees as stakeholders, we conclude that in fact more stringent regulation is required

    The Origins of Concentric Demyelination: Self-Organization in the Human Brain

    Get PDF
    Baló's concentric sclerosis is a rare atypical form of multiple sclerosis characterized by striking concentric demyelination patterns. We propose a robust mathematical model for Baló's sclerosis, sharing common molecular and cellular mechanisms with multiple sclerosis. A reconsideration of the analogies between Baló's sclerosis and the Liesegang periodic precipitation phenomenon led us to propose a chemotactic cellular model for this disease. Rings of demyelination appear as a result of self-organization processes, and closely mimic Baló lesions. According to our results, homogeneous and concentric demyelinations may be two different macroscopic outcomes of a single fundamental immune disorder. Furthermore, in chemotactic models, cellular aggressivity appears to play a central role in pattern formation

    Cellular Radiosensitivity: How much better do we understand it?

    Get PDF
    Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies. Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation

    Sharing vocabularies: towards horizontal alignment of values-driven business functions

    Get PDF
    This paper highlights the emergence of different ‘vocabularies’ that describe various values-driven business functions within large organisations and argues for improved horizontal alignment between them. We investigate two established functions that have long-standing organisational histories: Ethics and Compliance (E&C) and Corporate Social Responsibility (CSR). By drawing upon research on organisational alignment, we explain both the need for and the potential benefit of greater alignment between these values-driven functions. We then examine the structural and socio-cultural dimensions of organisational systems through which E&C and CSR horizontal alignment can be coordinated to improve synergies, address tensions, and generate insight to inform future research and practice in the field of Business and Society. The paper concludes with research questions that can inform future scholarly research and a practical model to guide organizations’ efforts towards inter-functional, horizontal alignment of values-driven organizational practice

    Evidence of Differential Allelic Effects between Adolescents and Adults for Plasma High-Density Lipoprotein

    Get PDF
    A recent meta-analysis of genome-wide association (GWA) studies identified 95 loci that influence lipid traits in the adult population and found that collectively these explained about 25–30% of heritability for each trait. Little is known about how these loci affect lipid levels in early life, but there is evidence that genetic effects on HDL- and LDL-cholesterol (HDL-C, LDL-C) and triglycerides vary with age. We studied Australian adults (N = 10,151) and adolescents (N = 2,363) who participated in twin and family studies and for whom we have lipid phenotypes and genotype information for 91 of the 95 genetic variants. Heterogeneity tests between effect sizes in adult and adolescent cohorts showed an excess of heterogeneity for HDL-C (pHet<0.05 at 5 out of 37 loci), but no more than expected by chance for LDL-C (1 out of 14 loci), or trigycerides (0 out 24). There were 2 (out of 5) with opposite direction of effect in adolescents compared to adults for HDL-C, but none for LDL-C. The biggest difference in effect size was for LDL-C at rs6511720 near LDLR, adolescents (0.021±0.033 mmol/L) and adults (0.157±0.023 mmol/L), pHet = 0.013; followed by ZNF664 (pHet = 0.018) and PABPC4 (pHet = 0.034) for HDL-C. Our findings suggest that some of the previously identified variants associate differently with lipid traits in adolescents compared to adults, either because of developmental changes or because of greater interactions with environmental differences in adults

    Investigating antimalarial drug interactions of emetine dihydrochloride hydrate using CalcuSyn-based interactivity calculations

    Get PDF
    The widespread introduction of artemisinin-based combination therapy has contributed to recent reductions in malaria mortality. Combination therapies have a range of advantages, including synergism, toxicity reduction, and delaying the onset of resistance acquisition. Unfortunately, antimalarial combination therapy is limited by the depleting repertoire of effective drugs with distinct target pathways. To fast-track antimalarial drug discovery, we have previously employed drug-repositioning to identify the anti-amoebic drug, emetine dihydrochloride hydrate, as a potential candidate for repositioned use against malaria. Despite its 1000-fold increase in in vitro antimalarial potency (ED50 47 nM) compared with its anti-amoebic potency (ED50 26±32 uM), practical use of the compound has been limited by dose-dependent toxicity (emesis and cardiotoxicity). Identification of a synergistic partner drug would present an opportunity for dose-reduction, thus increasing the therapeutic window. The lack of reliable and standardised methodology to enable the in vitro definition of synergistic potential for antimalarials is a major drawback. Here we use isobologram and combination-index data generated by CalcuSyn software analyses (Biosoft v2.1) to define drug interactivity in an objective, automated manner. The method, based on the median effect principle proposed by Chou and Talalay, was initially validated for antimalarial application using the known synergistic combination (atovaquone-proguanil). The combination was used to further understand the relationship between SYBR Green viability and cytocidal versus cytostatic effects of drugs at higher levels of inhibition. We report here the use of the optimised Chou Talalay method to define synergistic antimalarial drug interactivity between emetine dihydrochloride hydrate and atovaquone. The novel findings present a potential route to harness the nanomolar antimalarial efficacy of this affordable natural product

    Dynamic Activation and Repression of the Plasmodium falciparum rif Gene Family and Their Relation to Chromatin Modification

    Get PDF
    The regulation of variant gene expression in Plasmodium falciparum is still only partially understood. Regulation of var genes, the most studied gene family involved in antigenic variation, is orchestrated by a dynamic pattern of inherited chromatin states. Although recent evidence pointed to epigenetic regulation of transcribed and repressed rif loci, little is known about specific on/off associated histone modifications of individual rif genes. To investigate the chromatin marks for transcribed and repressed rif loci, we cultivated parasites and evaluated the transcriptional status of chosen rif targets by qRT-PCR and performed ChIP assays using H3K9ac and H3K9me3 antibodies. We then monitored changes in the epigenetic patterns in parasites after several reinvasions and also evaluated the “poised” mark in trophozoites and schizonts of the same erythrocytic cycle by ChIP using H3K4me2 specific antibodies. Our results show that H3K9 is acetylated in transcribed rif loci and trimethylated or even unmodified in repressed rif loci. These transcriptional and epigenetic states are inherited after several reinvasions. The poised modification H3K4me2 showed a tendency to be more present in loci in trophozoites that upon progression to schizonts strongly transcribe the respective locus. However, this effect was not consistently observed for all monitored loci. While our data show important similarities to var transcription-associated chromatin modifications, the observed swiftly occurring modifications at rif loci and the absence of H3K9 modification point to a different dynamic of recruitment of chromatin modifying enzymes
    corecore