165 research outputs found

    Effects of castration on the immunoreactivity to NGF, BDNF and their receptors in the pelvic ganglia of the male rat

    Get PDF
    Nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) and are members of the neurotrophin family, a family of neurotrophic factors that also includes neurotrophin (NT) 3 and NT4/5. Neurotrophins have essential roles in the survival, development and differentiation of neurons in the central and peripheral nervous systems. Neurotrophins exert their effects by binding to corresponding receptors which are formed by the tyrosine protein kinases TrkA, TrkB and TrkC, and the low affinity neurotrophic receptor (p75NTR). In the present study, using immunohistochemistry and quantitative analysis, we have investigated immunoreactivity to BDNF, NGF, TrkB, p75NTR and TrkA in the pelvic ganglia of normal and castrated rats. Neurons of the pelvic ganglia expressed both these neurotrophins and their receptors. After castration the immunoreactivity persisted. However, the number of BDNF- and p75NTR–IR cells statistically significant decreased after castration. These results suggest that castration modulates the expression of neurotrophins and their receptors in pelvic autonomic neurons

    Seasonal reproductive activity and innervation of vas deferens and accessory male genital glands in the water buffalo (Bubalus bubalis)

    Get PDF
    Autonomic nerves supplying mammalian male internal genital organs have an important role in the regulation of reproductive function. To find out the relationships between the neurochemical content of these nerves and the reproductive activity, we performed an immunohistochemical study in a species, the water buffalo, exhibiting a seasonal sexual behaviour. The distribution of noradrenergic and peptide-containing nerves was evaluated during the mating (autumn-winter) and non-mating (spring-summer) periods. During the mating period, a dense noradrenergic innervation was observed to supply the vas deferens as well as the accessory genital glands. Peptide-containing nerves were also observed but with a lower density. During the non-mating period noradrenergic nerves dramatically reduced. These results suggest that there is a neuro-endocrine interaction between androgen hormones and the autonomic nerve supply in the regulation of male water buffalo reproductive functions

    Concise review: cancer cells, cancer stem cells, and mesenchymal stem cells: influence in cancer development

    Get PDF
    Tumors are composed of different types of cancer cells that contribute to tumor heterogeneity. Among these populations of cells, cancer stem cells (CSCs) play an important role in cancer initiation and progression. Like their stem cells counterpart, CSCs are also characterized by self-renewal and the capacity to differentiate. A particular population of CSCs is constituted by mesenchymal stem cells (MSCs) that differentiate into cells of mesodermal characteristics. Several studies have reported the potential pro-or anti-tumorigenic influence of MSCs on tumor initiation and progression. In fact, MSCs are recruited to the site of wound healing to repair damaged tissues, an event that is also associated with tumorigenesis. In other cases, resident or migrating MSCs can favor tumor angiogenesis and increase tumor aggressiveness. This interplay between MSCs and cancer cells is fundamental for cancerogenesis, progression, and metastasis. Therefore, an interesting topic is the relationship between cancer cells, CSCs, and MSCs, since contrasting reports about their respective influences have been reported. In this review, we discuss recent findings related to conflicting results on the influence of normal and CSCs in cancer development. The understanding of the role of MSCs in cancer is also important in cancer management

    Automated Large-Scale Production of Paclitaxel Loaded Mesenchymal Stromal Cells for Cell Therapy Applications

    Get PDF
    Mesenchymal stromal cells (MSCs) prepared as advanced therapies medicinal products (ATMPs) have been widely used for the treatment of different diseases. The latest developments concern the possibility to use MSCs as carrier of molecules, including chemotherapeutic drugs. Taking advantage of their intrinsic homing feature, MSCs may improve drugs localization in the disease area. However, for cell therapy applications, a significant number of MSCs loaded with the drug is required. We here investigate the possibility to produce a large amount of Good Manufacturing Practice (GMP)-compliant MSCs loaded with the chemotherapeutic drug Paclitaxel (MSCs-PTX), using a closed bioreactor system. Cells were obtained starting from 13 adipose tissue lipoaspirates. All samples were characterized in terms of number/viability, morphology, growth kinetics, and immunophenotype. The ability of MSCs to internalize PTX as well as the antiproliferative activity of the MSCs-PTX in vitro was also assessed. The results demonstrate that our approach allows a large scale expansion of cells within a week; the MSCs-PTX, despite a different morphology from MSCs, displayed the typical features of MSCs in terms of viability, adhesion capacity, and phenotype. In addition, MSCs showed the ability to internalize PTX and finally to kill cancer cells, inhibiting the proliferation of tumor lines in vitro. In summary our results demonstrate for the first time that it is possible to obtain, in a short time, large amounts of MSCs loaded with PTX to be used in clinical trials for the treatment of patients with oncological diseases

    A new inhibitor of glucose-6-phospate dehydrogenase blocks pentose phosphate pathway and suppresses malignant proliferation and metastasis in vivo

    Get PDF
    Pentose Phosphate Pathway (PPP) is a major glucose metabolism pathway which has a fundamental role in cancer growth and metastasis. Even though PPP blockade has been pointed out as a very promising strategy against cancer, effective anti-PPP agents are not still available in the clinical setting. Here, we demonstrate that the natural molecule polydatin inhibits glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of PPP. Polydatin blocks G6PD causing accumulation of reactive oxygen species and strong increase of endoplasmic reticulum stress. These effects are followed by cell cycle block in S phase, an about 50% of apoptosis, and 60% inhibition of invasion in vitro. Accordingly, in an orthotopic metastatic model of tongue cancer, 100 mg/kg polydatin induced an about 30% tumor size reduction with an about 80% inhibition of lymph node metastases and 50% reduction of lymph node size (p< 0.005). Polydatin is not toxic in animals up to a dose of 200 mg/kg and a phase II clinical trial shows that a is also well tolerated in humans (40 mg twice a day for 90 days). Thus, polydatin may be used as a reliable tool to limit human cancer growth and metastatic spread

    Glucose-6-phosphate dehydrogenase blockade potentiates tyrosine kinase inhibitor effect on breast cancer cells through autophagy perturbation

    Get PDF
    Background: Glucose-6-phospate dehydrogenase (G6PD) is the limiting enzyme of the pentose phosphate pathway (PPP) correlated to cancer progression and drug resistance. We previously showed that G6PD inhibition leads to Endoplasmic Reticulum (ER) stress often associated to autophagy deregulation. The latter can be induced by target-based agents such as Lapatinib, an anti-HER2 tyrosine kinase inhibitor (TKI) largely used in breast cancer treatment. Methods: Here we investigate whether G6PD inhibition causes autophagy alteration, which can potentiate Lapatinib effect on cancer cells. Immunofluorescence and flow cytometry for LC3B and lysosomes tracker were used to study autophagy in cells treated with lapatinib and/or G6PD inhibitors (polydatin). Immunoblots for LC3B and p62 were performed to confirm autophagy flux analyses together with puncta and colocalization studies. We generated a cell line overexpressing G6PD and performed synergism studies on cell growth inhibition induced by Lapatinib and Polydatin using the median effect by Chou-Talay. Synergism studies were additionally validated with apoptosis analysis by annexin V/PI staining in the presence or absence of autophagy blockers. Results: We found that the inhibition of G6PD induced endoplasmic reticulum stress, which was responsible for the deregulation of autophagy flux. Indeed, G6PD blockade caused a consistent increase of autophagosomes formation independently from mTOR status. Cells engineered to overexpress G6PD became resilient to autophagy and resistant to lapatinib. On the other hand, G6PD inhibition synergistically increased lapatinib-induced cytotoxic effect on cancer cells, while autophagy blockade abolished this effect. Finally, in silico studies showed a significant correlation between G6PD expression and tumour relapse/resistance in patients. Conclusions: These results point out that autophagy and PPP are crucial players in TKI resistance, and highlight a peculiar vulnerability of breast cancer cells, where impairment of metabolic pathways and autophagy could be used to reinforce TKI efficacy in cancer treatment

    Human neural crest-derived postnatal cells exhibit remarkable embryonic attributes either in vitro or in vivo

    Get PDF
    During human embryonic development, odontogenic tissues, deriving from the neural crest, remain undifferentiated until the adult age. This study was aimed at characterising the cells of the follicle enveloping the dental germ, due to its direct origin from neural crests. Sixty dental follicles were collected from patients aged 18 to 45 years. This research has clarified that dental follicles, if extracted in a very early stage, when dental roots did not start to be formed, contain a lineage of cells, characterised by a high degree of plasticity in comparison with other adult stem cell populations. In particular, we found that these cells share the following features with ES: (i) high levels of embryonic stem cell markers (CD90, TRA1-60, TRA1-81, OCT-4, CD133, and SSEA-4); (ii) mRNA transcripts for Nanog and Rex-1; (iii) broader potency, being able to differentiate in cell types of all three germ layer, including smooth and skeletal muscle, osteoblasts, neurons, glial cells, and adipocytes; (iv) high levels of telomerase activity; (v) ability to form embryoid bodies; (vi) ability, after injection in murine blastocysts, to be localised within the inner cell mass; (vii) no teratoma formation after injection; (viii) in vivo tissue formation after transplantation. Our results demonstrate that these cells represent a very easy accessible and extraordinary source of pluripotent cells and point out the fact that they own the cardinal feature of embryonic stem cells
    • …
    corecore