143 research outputs found

    Linear optical implementation of a single mode quantum filter and generation of multi-photon polarization entangled state

    Get PDF
    We propose a scheme to implement a single-mode quantum filter, which selectively eliminates the one-photon state in a quantum state α∣0>+β∣1>+γ∣2>\alpha|0>+\beta|1>+\gamma|2>. The vacuum state and the two photon state are transmitted without any change. This scheme requires single-photon sources, linear optical elements and photon detectors. Furthermore we demonstrate, how this filter can be used to realize a two-qubit projective measurement and to generate multi-photon polarization entangled states.Comment: revision submitted to PR

    The feasible generation of entangled photon states by using linear optical elements

    Full text link
    We present a feasible scheme to produce a polarization-entangled photon states 12(∣H>∣V>+∣V>∣H>)\frac{1}{\sqrt{2}}(|H>|V>+|V>|H>) in a controllable way. This scheme requires single-photon sources, linear optical elements and photon detectors. It generates the entanglement of spatially separated photons. The interaction takes place in the photon detectors. We also show that the same idea can be used to produce the entangled NN-photon state 12(∣0,N>+∣N,0>)\frac{1}{\sqrt{2}}(|0,N>+|N,0>)Comment: to appear in PR

    Controlling the near-surface superfluid density in underdoped YBa₂Cu₃O<sub>6+<i>x</i></sub> by photo-illumination

    Get PDF
    The interaction with light weakens the superconducting ground state in classical superconductors. The situation in cuprate superconductors is more complicated: illumination increases the charge carrier density, a photo-induced effect that persists below room temperature. Furthermore, systematic investigations in underdoped YBa₂Cu₃O6+x (YBCO) have shown an enhanced critical temperature Tc. Until now, studies of photo-persistent conductivity (PPC) have been limited to investigations of structural and transport properties, as well as the onset of superconductivity. Here we show how changes in the magnetic screening profile of YBCO in the Meissner state due to PPC can be determined on a nanometer scale utilizing low-energy muons. The data obtained reveal a strongly increased superfluid density within the first few tens of nanometers from the sample surface. Our findings suggest a non-trivial modification of the near-surface band structure and give direct evidence that the superfluid density of YBCO can be controlled by light illumination
    • …
    corecore