18 research outputs found

    Light Quark Masses in Multi-Quark Interactions

    Get PDF
    We suggest and discuss in detail a multi-quark three flavor Lagrangian of the Nambu -- Jona-Lasinio type, which includes a set of effective interactions proportional to the current quark masses. It is shown that within the dynamical chiral symmetry breaking regime, the masses of the pseudo Goldstone bosons and their chiral partners, members of the low lying scalar nonet, are in perfect agreement with current phenomenological expectations. The role of the new interactions is analyzed.Comment: 8 pages, published versio

    Strength of the Trilinear Higgs Boson Coupling in Technicolor Models

    Get PDF
    We discuss the strength of the trilinear Higgs boson coupling in technicolor (or composite) models in a model independent way. The coupling is determined as a function of a very general ansatz for the technicolor self-energy, and turns out to be equal or smaller than the one of the standard model Higgs boson depending on the dynamics of the theory. With this trilinear coupling we estimate the cross section for Higgs boson pair production at the LHC. This measurement is quite improbable in the case of a heavy standard model Higgs boson, but it will be even worse when this boson is dynamically generated.Comment: 20 pages, 4 figures, Typos correcte

    Body Fixed Frame, Rigid Gauge Rotations and Large N Random Fields in QCD

    Get PDF
    The "body fixed frame" with respect to local gauge transformations is introduced. Rigid gauge "rotations" in QCD and their \Sch equation are studied for static and dynamic quarks. Possible choices of the rigid gauge field configuration corresponding to a nonvanishing static colormagnetic field in the "body fixed" frame are discussed. A gauge invariant variational equation is derived in this frame. For large number N of colors the rigid gauge field configuration is regarded as random with maximally random probability distribution under constraints on macroscopic--like quantities. For the uniform magnetic field the joint probability distribution of the field components is determined by maximizing the appropriate entropy under the area law constraint for the Wilson loop. In the quark sector the gauge invariance requires the rigid gauge field configuration to appear not only as a background but also as inducing an instantaneous quark-quark interaction. Both are random in the large N limit.Comment: 29 pages LATEX, Weizmann Institute preprint WIS-93/40/Apr -P

    General relativity as an effective field theory: The leading quantum corrections

    Get PDF
    I describe the treatment of gravity as a quantum effective field theory. This allows a natural separation of the (known) low energy quantum effects from the (unknown) high energy contributions. Within this framework, gravity is a well behaved quantum field theory at ordinary energies. In studying the class of quantum corrections at low energy, the dominant effects at large distance can be isolated, as these are due to the propagation of the massless particles (including gravitons) of the theory and are manifested in the nonlocal/nonanalytic contributions to vertex functions and propagators. These leading quantum corrections are parameter-free and represent necessary consequences of quantum gravity. The methodology is illustrated by a calculation of the leading quantum corrections to the gravitational interaction of two heavy masses.Comment: 34 pages, Latex, UMHEP-40

    Low Energy Chiral Lagrangian in Curved Space-Time from the Spectral Quark Model

    Full text link
    We analyze the recently proposed Spectral Quark Model in the light of Chiral Perturbation Theory in curved space-time. In particular, we calculate the chiral coefficients L1,...,L10L_1, ..., L_{10}, as well as the coefficients L11L_{11}, L12L_{12}, and L13L_{13}, appearing when the model is coupled to gravity. The analysis is carried for the SU(3) case. We analyze the pattern of chiral symmetry breaking as well as elaborate on the fulfillment of anomalies. Matching the model results to resonance meson exchange yields the relation between the masses of the scalar, tensor and vector mesons, Mf0=Mf2=2MV=43/NcπfπM_{f_0}=M_{f_2}=\sqrt{2} M_V= 4 \sqrt{3 /N_c} \pi f_\pi. Finally, the large-NcN_c limit suggests the dual relations in the vector and scalar channels, MV=MS=26/NcπfπM_V=M_S= 2 \sqrt{6 /N_c} \pi f_\pi and S1/2=<r2>V1/2=2Nc/fπ=0.59fm^{1/2}_S = < r^2 >^{1/2}_V = 2 \sqrt{N_c} / f_\pi = 0.59 {\rm fm} .Comment: 18 pages, no figure

    Mass and width of a composite Higgs boson

    Get PDF
    The scalar Higgs boson mass in a Technicolor model was obtained by Elias and Scadron with the analysis of an homogeneous Bethe-Salpeter equation (BSE), however it was performed before the most recent developments of walking gauge theories. It was not observed in their work that dynamically generated technifermion mass may vary according to the theory dynamics that forms the scalar bound state. This will be done in this work and we also call attention that their calculation must change to take into account the normalization condition of the BSE. We compute the width of the composite boson and show how the gauge group and fermion content of a technicolor theory can be inferred from the measurement of the mass and width of the scalar boson.Comment: New reference and new figure added. Additional discussion about experimental constraints. Typos correcte

    Precision Pion-Proton Elastic Differential Cross Sections at Energies Spanning the Delta Resonance

    Full text link
    A precision measurement of absolute pi+p and pi-p elastic differential cross sections at incident pion laboratory kinetic energies from T_pi= 141.15 to 267.3 MeV is described. Data were obtained detecting the scattered pion and recoil proton in coincidence at 12 laboratory pion angles from 55 to 155 degrees for pi+p, and six angles from 60 to 155 degrees for pi-p. Single arm measurements were also obtained for pi+p energies up to 218.1 MeV, with the scattered pi+ detected at six angles from 20 to 70 degrees. A flat-walled, super-cooled liquid hydrogen target as well as solid CH2 targets were used. The data are characterized by small uncertainties, ~1-2% statistical and ~1-1.5% normalization. The reliability of the cross section results was ensured by carrying out the measurements under a variety of experimental conditions to identify and quantify the sources of instrumental uncertainty. Our lowest and highest energy data are consistent with overlapping results from TRIUMF and LAMPF. In general, the Virginia Polytechnic Institute SM95 partial wave analysis solution describes our data well, but the older Karlsruhe-Helsinki PWA solution KH80 does not.Comment: 39 pages, 22 figures (some with quality reduced to satisfy ArXiv requirements. Contact M.M. Pavan for originals). Submitted to Physical Review

    Radiative Decay of a Long-Lived Particle and Big-Bang Nucleosynthesis

    Full text link
    The effects of radiatively decaying, long-lived particles on big-bang nucleosynthesis (BBN) are discussed. If high-energy photons are emitted after BBN, they may change the abundances of the light elements through photodissociation processes, which may result in a significant discrepancy between the BBN theory and observation. We calculate the abundances of the light elements, including the effects of photodissociation induced by a radiatively decaying particle, but neglecting the hadronic branching ratio. Using these calculated abundances, we derive a constraint on such particles by comparing our theoretical results with observations. Taking into account the recent controversies regarding the observations of the light-element abundances, we derive constraints for various combinations of the measurements. We also discuss several models which predict such radiatively decaying particles, and we derive constraints on such models.Comment: Published version in Phys. Rev. D. Typos in figure captions correcte

    Health-related quality-of-life trajectories over time in older men and women with advanced chronic kidney disease

    Get PDF
    Background and objectives The effect of sex on longitudinal health-related quality of life remains unknown in CKD. Here we assess differences in the sex-specific evolution of health-related quality of life in older men and women with advanced CKD.Design, setting, participants, & measurements The European Quality Study on Treatment in Advanced Chronic Kidney Disease is a European observational prospective cohort study in referred patients with CKD and an incident eGFR = 65 years of age not on dialysis. Health-related quality of life was measured using the 36-Item Short Form Survey at 3- to 6-month intervals between April 2012 and September 2020, providing Physical Component Summary and Mental Component Summary scores. Trajectories were modeled by sex using linear mixed models, and sex differences in health-related quality-of-life slope were explored. Results We included 5345 health-related quality-of-life measurements in 1421 participants. At baseline, women had considerably lower mean Physical Component Summary (42) and Mental Component Summary (60) compared with men (Physical Component Summary: 55; Mental Component Summary: 69; P < 0.001). However, during follow-up, Physical Component Summary and Mental Component Summary scores declined approximately twice as fast in men (Physical Component Summary: 2.5 per year; 95% confidence interval, 1.8 to 3.1; Mental Component Summary: 2.7 per year; 95% confidence interval, 2.0 to 3.4) compared with in women (Physical Component Summary: 1.1 per year; 95% confidence interval, 0.1 to 2.0; Mental Component Summary: 1.6 per year; 95% confidence interval, 0.7 to 2.6). This difference was partly attenuated after adjusting for important covariates, notably eGFR decline. Higher serum phosphate, lower hemoglobin, and the presence of preexisting diabetes were associated with lower Physical Component Summary and Mental Component Summary scores in men but to a lesser extent in women. Conclusions Among older men and women with advanced CKD, women had lower health-related quality of life at baseline, but men experienced a more rapid decline in health-related quality of life over time.Clinical epidemiolog

    de Sitter gauge theories and induced gravities

    Full text link
    Pure de Sitter, anti de Sitter, and orthogonal gauge theories in four-dimensional Euclidean spacetime are studied. It is shown that, if the theory is asymptotically free and a dynamical mass is generated, then an effective geometry may be induced and a gravity theory emerges. The asymptotic freedom and the running of the mass might account for an In\"on\"u-Wigner contraction which induces a breaking of the gauge group to the Lorentz group, while the mass itself is responsible for the coset sector of the gauge field to be identified with the effective vierbein. Furthermore, the resulting local isometries are Lorentzian for the anti de Sitter group and Euclidean for the de Sitter and orthogonal groups.Comment: Sections added. Text reviewed. References added. 14 pages, no figures. Final version to appear in EPJ
    corecore