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Abstract

We discuss the strength of the trilinear Higgs boson coupling in technicolor (or composite) models in a model independent way. The coupling is
determined as a function of a very general ansatz for the technicolor self-energy, and turns out to be equal or smaller than the one of the Standard
Model Higgs boson depending on the dynamics of the theory.
© 2006 Published by Elsevier B.V.
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1. Introduction

In the Standard Model of elementary particles the fermion
and gauge boson masses are generated due to the interaction
of these particles with elementary Higgs scalar bosons. Despite
its success there are some points in the model as, for instance,
the enormous range of masses between the lightest and heaviest
fermions and other peculiarities that could be better explained
at a deeper level. The nature of the Higgs boson is one of the
most important problems in particle physics, and there are many
questions that may be answered in the near future by LHC
experiments, such as: is the Higgs boson, if it exists at all, el-
ementary or composite? What are the symmetries behind the
Higgs mechanism?

There are many variants for the Higgs mechanism. Our in-
terest in this work will be focused in the models of electroweak
symmetry breaking via strongly interacting theories of techni-
color type [1]. In these theories the Higgs boson is a composite
of the so-called technifermions, and at some extent any model
where the Higgs boson is not an elementary field follows more
or less the same ideas of the technicolor models. In exten-
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sions of the Standard Model the scalar self-couplings can be
enhanced, like in the supersymmetric version. If the same hap-
pens in models of dynamical symmetry breaking, as far as we
know, has not been investigated up to now, and this study is the
motivation of our work.

The beautiful characteristics of technicolor (TC) as well as
its problems were clearly listed recently by Lane [1,2]. Most of
the technicolor problems may be related to the dynamics of the
theory as described in Ref. [1]. Although technicolor is a non-
Abelian gauge theory it is not necessarily similar to QCD, and
if we cannot even say that QCD is fully understood up to now,
it is perfectly reasonable to realize the enormous work that is
needed to abstract from the fermionic spectrum the underlying
technicolor dynamics. The many attempts to build a realistic
model of dynamically generated fermion masses are reviewed
in Refs. [1,2]. Most of the work in this area try to find the TC
dynamics dealing with the particle content of the theory in or-
der to obtain a technifermion self-energy that does not lead to
phenomenological problems as in the scheme known as walk-
ing technicolor [3].

The idea of this scheme is quite simple. First, remember
that the expression for the TC self-energy is proportional to
Σ(p2)TC ∝ (〈ψ̄ψ〉TC/p2)(p2/Λ2

TC)γ
∗
, where 〈ψ̄ψ〉TC is the

TC condensate and γ ∗ its anomalous dimension. Secondly, de-
pending on the behavior of the anomalous dimension we obtain
different behaviors for Σ(p2)TC. A large anomalous dimen-
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sion may solve the problems in TC models. In principle we
could deal with many different models, varying fermion repre-
sentations and particle content, finding different expressions for
Σ(p2)TC and testing them phenomenologically, i.e., obtaining
the fermion mass spectra without any conflict with experiment.
Usually the walking behavior is obtained only with a large
number of technifermions, although there are recent proposals
where the walking behavior is obtained for a very small num-
ber of fields with the introduction of technifermions in higher
dimensional representations of the technicolor gauge group [4].

As the dynamics in models of dynamical symmetry breaking
can be so different from QCD, it is interesting to investigate the
behavior of the dynamical Higgs boson self-coupling, verifying
if it can be larger or smaller than the one of the Standard Model.
In this work we will consider a very general ansatz for the
technifermion self-energy that was introduced in Ref. [5]. This
ansatz interpolates between all known forms of technifermionic
self-energy. As we vary some parameters in our ansatz for the
technifermionic self-energy we go from the standard operator
product expansion (OPE) behavior of the self-energy to the one
predicted by the extreme limit of a walking technicolor dynam-
ics, i.e., γ ∗ → 1 [3,6,7]. We will discuss the general properties
of the trilinear Higgs coupling based on this ansatz.

This Letter is organized as follows: In Section 2 we compute
the trilinear self-coupling of a composite Higgs boson assum-
ing the ansatz for the fermionic self-energy shown in Ref. [5]. In
Section 3 we review the self-couplings of the Standard Model
fundamental Higgs field and compare them with the results
shown in the previous section. Finally in Section 4 we draw
our conclusions.

2. The trilinear self-coupling for a composite Higgs boson

Using Ward identities we can show the couplings of the
scalar boson to fermions to be [6]

(1)Ga(p + q,p) = −ı
gW

2MW

[
τaΣ(p)PR − Σ(p + q)τaPL

]
,

where PR,L = 1
2 (1 ± γ5), τa is a SU(2) matrix, and Σ is a

matrix of fermionic self-energies in weak-isodoublet space. As
in Ref. [6] we assume that there is a scalar composite Higgs
boson that couples to the fermionic self-energy which is sat-
urated by the top quark [8]. Specifically, we assume that the
scalar-to-fermion coupling matrix at large momenta is given by
G(p,p), where we do not attempt to distinguish between the
two fermion momenta p and p + q , since, in all situations with
which we will be concerned, Σ(p + q) ≈ Σ(p). Therefore the
coupling between a composite Higgs boson with fermions at
large momenta is given by

(2)λHff (p) ≡ G(p,p) ∼ − gW

2MW

Σ
(
p2),

where Σ(p2) is the fermionic self-energy. The trilinear Higgs
boson coupling in technicolor models will be dominated by
loops of heavy fermions that couple to the scalar Higgs par-
ticle as predicted by Eq. (2) [6]. Our purpose in this section is
to obtain an expression for the trilinear Higgs boson coupling
using the ansatz

(3)ΣA

(
p2) ∼ ΛTC

(
Λ2

TC

p2

)α[
1 + a ln

(
p2/Λ2

TC

)]−β
,

which was proposed in Ref. [5]. This choice interpolates be-
tween the standard OPE result for the technifermion self-
energy, which is obtained when α → 1, and the extreme walk-
ing technicolor solution obtained when α → 0 [3], i.e., this is
the case where the symmetry breaking is dominated by higher
order interactions that are relevant at or above the TC scale,
leading naturally to a very hard dynamics [6,7]. As we have
pointed out in Ref. [8] only such kind of solution is naturally
capable of generating a large mass to the third fermionic gener-
ation, which has a mass limit almost saturated by the top quark
mass. Moreover, as also claimed in the second paper of Ref. [8],
there are other possible reasons to have α ∼ 0, as the existence
of an infrared fixed point and a gluon (or technigluon) mass
scale [9], which, actually, are related possibilities [10]. It is
interesting that many technicolor models make use of the exis-
tence of a non-trivial fixed point (or a quasi-conformal theory)
to cure their phenomenological problems [3], and exactly for
this possibility Brodsky has been claiming that it will be pos-
sible to built an skeleton expansion that could allow to capture
the non-perturbative effects in a reliable way [11].

In Eq. (3) the scale, ΛTC is related to the technicolor con-
densate by 〈ψ̄ψ〉TC ≈ Λ3

TC. We defined β ≡ γTC cos(απ), a ≡
bg2

TC with γTC = 3c/16π2b, and c is the quadratic Casimir op-
erator given by

c = 1

2

[
C2(R1) + C2(R1) − C2(R3)

]
,

where C2(Ri), are the Casimir operators for technifermions in
the representations R1 and R2 that condensate in the represen-
tation R3, b is the coefficient of the g3 term in the technicolor
β(g) function.

We can determine one expression for the trilinear coupling
for any theory where the Higgs boson is composite by consid-
ering the diagram shown in Fig. 1. The contribution of Fig. 1
is certainly the dominant one [6]. Assuming the coupling of the
scalar boson to the fermions to be given by Eq. (1), and with
the fermion propagator written as

(4)SF (p) = (/p + Σ(p2))

(p2 − Σ2(p2))

Fig. 1. The gray blobs in this figure represent the coupling of composite
Higgs bosons to fermions. The double lines represent the composite Higgs
bosons. The full diagram is the main contribution to the trilinear Higgs boson
self-coupling.
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we find that

(5)λT
HHH = 3g3

W

64π2

(
3nF

M3
W

) ∞∫
0

Σ4(p2)p4 dp2

(p2 + Σ2(p2))3
,

where nF is the number of technifermions included in the
model. Considering the ansatz given by Eq. (3), and introducing
it into Eq. (5), we obtain

(6)λT
HHH ≈ 3g3

W

64π2

(
3nF

M3
W

)
Λ4

TC(ΛTC)4αI
(
p2)

with

I
(
p2) = 1

�(4β)

∞∫
0

dz z4β−1e−z(ΛTC)az

∞∫
0

dp2 (p2)2−4α−az

(p2 + Λ2
TC)3

.

To compute this last expression we have used the following
Mellin transform

(7)[1 + A lnB]−η = 1

�(η)

∞∫
0

dz zη−1e−z(B)−Az.

After performing the p2 integration in Eq. (6), we can write
this equation as

(8)λT
HHH ≈ 3g3

W

64π2

(
3nF

M3
W

)
Λ4

TC

�(4β)

∞∫
0

dz z4β−1e−z

4α + az
.

We will present our analysis of λT
HHH for two different regions

of the parameter α. We will start with the case α ≈ 0. Therefore
we can make the following expansion in Eq. (8)

(9)
1

4α + az
≈ 1

az

[
1 − 4α

az
+ O

(
α2) · · ·

]
.

Than Eq. (8) can be cast in the form

λT 0
HHH ≈ 3g3

W

64π2

(
3nF

M3
W

)
Λ4

TC

a�(4β)

[ ∞∫
0

dz z4β−2e−z

− 4α

a

∞∫
0

dz z4β−3e−z + O
(
α2) · · ·

]
.

Retaining only the first two terms in the α expansion and per-
forming the z integration, we finally can write

(10)λT 0
HHH ≈ 3g3

W

64π2

(
3nF

M3
W

)
Λ4

TC

a(4β − 1)

[
1 − 4α

a(4β − 2)

]
.

When α ≈ 1, we can consider a similar expansion, and follow-
ing the same steps we obtain

(11)λT 1
HHH ≈ 3g3

W

64π2

(
3nF

M3
W

)
Λ4

TC

4

[
1 − 4

a
(α − 1)

]
.

The above expressions for the trilinear Higgs coupling are quite
dependent on the scale ΛTC. This is not the best formula to
compute this coupling, since ΛTC, which in principle is related
to the value of the dynamical technifermion mass at the origin,
is not directly fixed by the symmetry breaking of the Standard
Model. A more appropriate quantity that can be used to describe
this coupling is the technipion decay constant, which is fixed by
the W and Z gauge boson masses.

Considering our comments in the previous paragraph we will
express the trilinear Higgs coupling as a function of the techni-
pion decay constant (FΠ ) instead of the scale ΛTC. FΠ can be
computed through the known Pagels and Stokar relation [12]

F 2
Π = NTC

4π2

∞∫
0

dp2 p2

(p2 + Σ2(p2))2

×
[
Σ2(p2) − p2

2

dΣ
(
p2

)
dp2

Σ
(
p2)],

where NTC is the technicolor number.
We compute the technipion decay constant using the ansatz

Eq. (3). After some calculation we obtain the following expres-
sion for FΠ

(12)F 2
Π = NTC

4π
Λ2

TCf (k),

where

(13)f (k) = (1 + k/2)

(1 + 2k)2
csc

[
π/(1 + 2k)

]
with

k = α + 3 cos(απ)/4π.

To obtain this expression we have assumed the scaling law
cαTC ∼ 1 [13]. To be consistent with Eqs. (10) and (11), we
also need to expand Eq. (12) for α ≈ 0 and α ≈ 1. In this case,
we obtain

(14)F 2
Π = NTC

8π
Λ2

TC

[
1 − S(α)

]
with

S(α) =
{

5α for α ≈ 0,

α/2 for α ≈ 1.

Finally, assuming this last equation, we can write Eqs. (10)
and (11) in the form

(15)λT α
HHH = 3nF

FΠ

N2
TC

f (α),

where for convenience we defined

f (α) =
⎧⎨
⎩

3
a(4β−1)

[1−4α/a(4β−2)]
(1−5α)2 when α ≈ 0,

3
4

[1−4(α−1)/a]
(1−α/2)2 when α ≈ 1

and will assume FΠ = 125 GeV.1

Our ansatz for the fermionic self-energy is a very general
one. No matter which is the theory (technicolor or any of its

1 In TC models containing ND doublets of technifermions FΠ =
250 GeV/

√
ND , and in this work we will be assuming ND = 4.
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variations) the self-energy will be limited to the expressions ob-
tained from Eq. (3) for α in the range [0,1], even the scenario
proposed in Ref. [4] will be described by such expression.

In the next section we will compare these expressions for the
trilinear composite Higgs boson self-coupling with the one of
the Standard Model fundamental Higgs boson.

3. Trilinear coupling: fundamental × composite Higgs
boson

In this section we review the expression for the trilinear cou-
pling in the case of the Standard Model fundamental Higgs
boson, and compare it to the ones found in the previous section.
We start writing the expression of the Higgs boson potential in
the Standard Model

(16)V (ϕ) = −μ2ϕ†ϕ + λ
(
ϕ†ϕ

)2
.

The self-couplings are uniquely determined in the Standard
Model by the mass of the Higgs boson, which is related to the
quadrilinear coupling λ by the following expression

M2
H = 2λv2.

After introducing the physical Higgs field H in the neutral
component of the doublet 〈ϕ〉 = (v + H)/

√
2 we can write the

potential as

(17)V (H) = M2
H

2
H 2 + M2

H

2v
H 3 + M2

H

8v2
H 4.

The multiple Higgs couplings can be derived from the potential
V (H), and the trilinear and quadrilinear couplings of the Higgs
field H are given by

λ3H = 3
M2

H

M2
Z

λ0,

(18)λ4H = 3
M2

H

M4
Z

λ2
0.

To obtain these expressions we assumed the normalization λ0 =
M2

Z/v.
In the case of a composite Higgs boson it is possible to show

that its mass can be expected to be of the following order [14]:

MH ∼ 2ΛTC.

This result is independent of the dynamics and is originated
from the similarity between the Schwinger–Dyson equation for
the technifermion self-energy and the Bethe–Salpeter equation
for the scalar channel [14]. Of course, as discussed in the previ-
ous section, we write MH as a function of F 2

Π instead of ΛTC.
To compare the results of the previous section with the cou-

plings shown above we can write the couplings for the compos-
ite Higgs boson as a function of its mass. Assuming the mass
relation given above, considering Eq. (15) and rewriting it in
terms of the parameter λ0, we obtain in the case of α = 0

(19)λT 0
3H =

(
1

14

)
nF MH

NTC
√

2πNTC

λ̂0

a(4β − 1)
,

and in the case when α = 1 we obtain

(20)λT 1
3H =

(
1

28

)
nF MH

NTC
√

πNTC
λ̂0,

where λ̂0 ≡ λ0/(1 GeV).
This coupling could also be computed by means of naive

dimensional analysis (nda), which would give λnda
3H � M2

H /v.
Our Eqs. (19) and (20) for the different trilinear couplings, cor-
responding to the extreme walking (α = 0) and standard OPE
(α = 1) solutions of the technifermion self-energy, which have
the same dimensional factors, can also be put in the form of
Eq. (18). However it has to be noticed that the self-energies
functional form are quite different in the extreme cases (α = 0
and α = 1), and after the integration of Eq. (5) it is natural to
expect a different numerical result, which appears in Eqs. (19)
and (20) in the form of different factors (a, 4β − 1 and

√
2 ).

This is the origin of the different values for the trilinear cou-
plings. This numerical and group structure would appear in the
nda result due to the fact that MH and v vary with the different
self-energies. The only parameter that must be kept is the di-
mensional constant Fπ in order to give the right masses to the
weak bosons.

In Fig. 2 the behavior of the trilinear Higgs couplings is
plotted as a function of the Higgs boson mass. The solid line
represents the contribution of the fundamental Higgs boson,
i.e., the Standard Model Higgs boson.

To compare the trilinear Higgs coupling for fundamental and
composite scalar bosons we will consider technicolor models
with technifermions in the fundamental representation and will
choose appropriately the number (nF ) of technifermions in or-
der to obtain the desired walking behavior. For example, if the
technicolor group is SU(2)TC, the walking limit is going to be
obtained with nF = 8. The 8 technifermions can be recognized
as a colored weak doublet Q = (Ua,Da),2 and a color-singlet
weak doublet L = (E,N). If the technicolor theory is described
by the SU(4)TC non-Abelian group, the extreme walking be-
havior is obtained when nF ∼ 14, which can be built with the
addition of two colored weak singlets (Ra,Sa). It is clear that
we are not discussing about phenomenologically viable mod-
els, but the cases that we are presenting are plausible examples
to make the comparison between the “composite” and the ele-
mentary coupling.

In Fig. 2 the continuous curve shows the behavior of the
trilinear Higgs boson self-coupling given by Eq. (18). In the
same figure we indicate by (�,�) the values of the trilin-
ear composite Higgs couplings obtained respectively with the
help of Eqs. (19) and (20) (α → 0, α → 1) in the case of the
SU(2)TC technicolor group. We also indicate by (�,�) in Fig. 2
the values of the trilinear coupling obtained for the SU(4)TC
when the parameter α has respectively the following behavior
(α → 0, α → 1).

It is possible to verify in Fig. 2 that the trilinear Higgs cou-
pling generated by the dynamics in the limit α → 0, which
corresponds to the extreme walking technicolor limit, are quite

2 In this expression a = 1, . . . ,3 is a color index.
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Fig. 2. Trilinear couplings as a function of the Higgs mass for a fundamental
and composite Higgs boson.

close to the values obtained in the case of the fundamental
Standard Model Higgs boson. However, in the limit α → 1
the behavior predicted for the trilinear Higgs coupling is very
different; it decreases the more the technicolor dynamics ap-
proaches the standard result predicted by simple OPE analysis.
The arrow in Fig. 2 shows roughly the expected change in the
trilinear coupling as we go from α → 0 to α → 1. Our result
complements the findings of Ref. [6] where it was shown that
in the extreme case (α = 0) the strongly interacting composite
sector is similar to the Standard Model.

4. Conclusions

In this work we have presented a discussion about the gen-
eral properties of the trilinear self-coupling of a composite
Higgs boson based on a general ansatz for the technifermion
self-energy. If the Higgs boson is composite we can expect it
to be, at least in the most usual models, a very massive parti-
cle, MH ∝ O(0.6–1.2) TeV, as in the examples of technicolor
gauge groups discussed above (SU(4)TC or SU(2)TC).

As can be seen in Fig. 2, in the limit that α → 0, the trilin-
ear coupling of a composite Higgs boson practically will not
differ from the one of a fundamental Higgs boson. In the limit
that α → 1, the trilinear coupling of the composite Higgs boson
is much smaller than the one predicted by the Standard Model.
Since the trilinear coupling of a fundamental Higgs boson, in
principle, could barely be measured at the LHC, observing the
subprocess gg → HH [15], we can imagine that it would not
be easier to measure such coupling if the Higgs boson is a com-
posite one.

If this coupling could be measured at the LHC, it would be
with one leg off-shell and the others probably on-shell, what is
different from the coupling that we have calculated in this work,
resulting from the simplification performed when passing from
Eq. (1) to Eq. (2). Apart from the fact that this would be an ex-
tremely difficult measurement, we can say that we shall expect
the same group factors to play a role in the full calculation of
this coupling, mostly because the integral of Eq. (5) is domi-
nated by the ultraviolet behavior of the self-energies, meaning
that the q momentum dependence of Eq. (1) would not intro-
duce large differences in the calculation of Eq. (5). Of course,
if this coupling is measured we certainly would need a more so-
phisticated calculation than the one presented here, and would
not be able even to present simple analytic expressions as the
ones shown in Eqs. (19) and (20).

According to what is known for a long time, the tech-
nifermion dynamics with α → 1 is exactly the one that leads
to the many phenomenological problems in technicolor mod-
els. The solution of these problems ask for a dynamics where
α → 0, and, fortunately, this very same extreme dynamics is the
one that would still allow for a study of the trilinear composite
Higgs boson coupling, at the same level as it would be possible
to observe in the case of a fundamental boson.

Acknowledgements

This research was supported by the Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPq) (A.A.N.)
and by Fundação de Amparo à Pesquisa do Estado de São Paulo
(FAPESP) (A.D.).

References

[1] K. Lane, in: Technicolor 2000, Lectures at the LNF Spring School in Nu-
clear, Subnuclear and Astroparticle Physics, Frascati (Rome), Italy, 15–20
May 2000, hep-ph/0007304;
See also K. Lane, hep-ph/0202255;
R.S. Chivukula, in: Models of Electroweak Symmetry Breaking, NATO
Advanced Study Institute on Quantum Field Theory Perspective and
Prospective, Les Houches, France, 16–26 June 1998, hep-ph/9803219.

[2] C.T. Hill, E.H. Simmons, Phys. Rep. 381 (2003) 235;
C.T. Hill, E.H. Simmons, Phys. Rep. 390 (2004) 553, Erratum.

[3] B. Holdom, Phys. Rev. D 24 (1981) R1441;
B. Holdom, Phys. Lett. B 150 (1985) 301;
T. Appelquist, D. Karabali, L.C.R. Wijewardhana, Phys. Rev. Lett. 57
(1986) 957;
T. Appelquist, L.C.R. Wijewardhana, Phys. Rev. D 36 (1987) 568;
K. Yamawaki, M. Bando, K.I. Matumoto, Phys. Rev. Lett. 56 (1986) 1335;
T. Akiba, T. Yanagida, Phys. Lett. B 169 (1986) 432.

[4] D.D. Dietrich, F. Sannino, K. Tuominen, Phys. Rev. D 72 (2005) 055001.
[5] A. Doff, A.A. Natale, Phys. Lett. B 537 (2002) 275.
[6] J. Carpenter, R. Norton, S. Siegemund-Broka, A. Soni, Phys. Rev. Lett. 65

(1990) 153.
[7] J.D. Carpenter, R.E. Norton, A. Soni, Phys. Lett. B 212 (1988) 63.
[8] A. Doff, A.A. Natale, Phys. Rev. D 68 (2003) 077702;

A. Doff, A.A. Natale, Eur. Phys. J. C 32 (2004) 417.
[9] R. Alkofer, L. von Smekal, Phys. Rep. 353 (2001) 281;

A.C. Aguilar, A. Mihara, A.A. Natale, Phys. Rev. D 65 (2002) 054011;
A.C. Aguilar, A. Mihara, A.A. Natale, Int. J. Mod. Phys. A 19 (2004) 249;
A.C. Aguilar, A.A. Natale, JHEP 0408 (2004) 057.

[10] A.C. Aguilar, A.A. Natale, P.S. Rodrigues da Silva, Phys. Rev. Lett. 90
(2003) 152001.

[11] S.J. Brodsky, hep-ph/0111127;
S.J. Brodsky, Acta Phys. Pol. B 32 (2001) 4013;
S.J. Brodsky, Fortschr. Phys. 50 (2002) 503, hep-ph/0310289.

[12] H. Pagels, S. Stokar, Phys. Rev. D 20 (1979) 2947.
[13] S. Raby, S. Dimopoulos, L. Susskind, Nucl. Phys. B 169 (1980) 373.
[14] R. Delbourgo, M.D. Scadron, Phys. Rev. Lett. 48 (1982) 379.
[15] A. Djouadi, W. Kilian, M. Muhlleitner, P.M. Zerwas, hep-ph/0001169;

A. Djouadi, W. Kilian, M. Muhlleitner, P.M. Zerwas, Eur. Phys. J. C 10
(1999) 45;
O.J.P. Eboli, G.C. Marques, S.F. Novaes, A.A. Natale, Phys. Lett. B 197
(1987) 269;
A. Djouadi, hep-ph/0503172.


	Strength of the trilinear Higgs boson coupling in technicolor models
	Introduction
	The trilinear self-coupling for a composite Higgs boson 
	Trilinear coupling: fundamental x composite Higgs boson
	Conclusions
	Acknowledgements
	References


