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Abstract. We suggest and discuss in detail a multi-quark three-flavor Lagrangian of the Nambu–Jona-
Lasinio type, which includes a set of effective interactions proportional to the current quark masses. It is
shown that within the dynamical chiral symmetry-breaking regime, the masses of the pseudo-Goldstone
bosons and their chiral partners, members of the low-lying scalar nonet, are in perfect agreement with
current phenomenological expectations. The role of the new interactions is analyzed.

1 Introduction

A long history of applying the Nambu–Jona-Lasinio (NJL)
model in hadron physics shows the importance of the
concept of effective multi-quark interactions for mod-
elling QCD at low energies. Originally formulated only
in terms of four-fermion chiral-symmetric couplings [1,2],
the model has been extended to the realistic three-flavor
and color case with U(1)A breaking six-quark ’t Hooft in-
teractions [3–16] and a set of eight-quark interactions [17].
The last ones complete the number of vertices which are
important in four dimensions for dynamical chiral sym-
metry breaking [18,19].

The explicit breaking of chiral symmetry in the model
is described by the quark mass term of the QCD La-
grangian, e.g., [20, 21]. As a result, deviations from the
exact symmetry predictions are expressed by functions of
the light quark masses. The current quark mass depen-
dence is of importance for several reasons, in particular
for the phenomenological description of meson spectra and
meson-meson interactions, and for the critical point search
in hot and dense hadronic matter. In the latter case it has
a strong impact on the phase diagram. The mass effects
may lead to a different phase structure. For instance, the
large mass difference between s and u(d) quarks may dis-
favor the formation of the color-flavor-locked phase at in-
termediate density, and the conjecture regarding the two
critical points structure finally may not be true [22].

The explicit chiral symmetry breaking (ChSB) by the
standard mass term of the free Lagrangian is only a
part of the more complicated picture arising in effective
models beyond leading order [23]. Chiral perturbation
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theory [24–27] gives a well-known example of a self-
consistent accounting of the mass terms, order by order,
in an expansion in the masses themselves. In fact, NJL-
type models should not be an exception from this rule. If
one considers multi-quark effective vertices, to the extent
that ’t Hooft and eight-quark terms are included in the
Lagrangian, certain mass-dependent multi-quark interac-
tions must be also taken into account. It is the purpose of
this paper to study such higher-order terms in the quark
mass expansion. In particular, we show the ability of the
model with new quark-mass–dependent interactions to de-
scribe the spectrum of the pseudo-Goldstone bosons, in-
cluding the fine tuning of the η−η′ splitting, and the spec-
trum of the light scalar mesons: σ(600), κ(850), f0(980),
and a0(980).

There are several motivations for this work. In the
first place, the quark masses are the only parameters of
the QCD Lagrangian which are responsible for an explicit
ChSB, and it is important for the effective theory to trace
this dependence in full detail. In this paper it will be ar-
gued that it is from the point of view of the 1/Nc expansion
that the new quark-mass–dependent interactions must be
included in the NJL-type Lagrangian already when the
U(1)A breaking ’t Hooft determinantal interaction is con-
sidered. This point is somehow completely ignored in the
current literature.

A second reason is that nowadays it is getting
clear that the eight-quark interactions, which are almost
inessential for the mesonic spectra in the vacuum, can be
important for the quark matter in a strong magnetic back-
ground [28–32]. We will show that there is a set of the
effective quark-mass–dependent interactions which are of
importance here and have not been considered yet.

A further motivation comes from the hadronic matter
studies in a hot and dense environment. It is known that
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lattice QCD at finite density suffers from the numerical
sign problem. Thus, the phase diagram is notoriously dif-
ficult to compute ab initio, except for an extremely high-
density regime where perturbative QCD methods are ap-
plicable. In such circumstances effective models designed
to shed light on the phase structure of QCD are valuable,
especially if such models are known to be successful in the
description of the hadronic matter at zero temperature
and density. Reasonable modifications of the NJL model
are of special interest in this context and our work aims
at future applications in that area.

2 Effective multi-quark interactions

The chiral quark Lagrangian has predictive power for the
energy range which is of order Λ � 4πfπ ∼ 1GeV [33]. Λ
characterizes the spontaneous chiral symmetry-breaking
scale. Consequently, the effective multi-quark interactions,
responsible for this dynamical effect, are suppressed by
Λ, which provides a natural expansion parameter in the
chiral effective Lagrangian. The scale above which these
interactions disappear and QCD becomes perturbative
enters the NJL model as an ultraviolet cut-off for the
quark loops. Thus, to build the NJL-type Lagrangian we
have only three elements: the quark fields q, the scale
Λ, and the external sources χ, which generate explicit
symmetry-breaking effects —resulting in mass terms and
mass-dependent interactions.

The color quark fields possess definite transformation
properties with respect to the chiral flavor U(3)L ×U(3)R

global symmetry of the QCD Lagrangian with three mass-
less quarks (in the large Nc limit). It is convenient to intro-
duce the U(3) Lie-algebra valued field Σ = (sa − ipa) 1

2λa,
where sa = q̄λaq, pa = q̄λaiγ5q, and a = 0, 1, . . . , 8,
λ0 =

√
2/3 × 1, λa being the standard SU(3) Gell-Mann

matrices for 1 ≤ a ≤ 8. Under chiral transformations,
q′ = VRqR+VLqL, where qR = PRq, qL = PLq, and PR,L =
1
2 (1± γ5). Hence, Σ′ = VRΣV †

L , and Σ†′ = VLΣ†V †
R. The

transformation property of the source is supposed to be
χ′ = VRχV †

L .
Any term of the effective multi-quark Lagrangian with-

out derivatives can be written as a certain combination of
fields which is invariant under chiral SU(3)R × SU(3)L

transformations and conserves C,P and T discrete sym-
metries. These terms have the general form

Li ∼
ḡi

Λγ
χαΣβ , (1)

where ḡi are dimensionless coupling constants (starting
from eq. (21) the dimensional couplings gi = ḡi/Λγ will
be also considered). Using dimensional arguments we find
α + 3β − γ = 4, with integer values for α, β and γ.

We obtain a second restriction by considering only the
vertices which make essential contributions to the gap
equations in the regime of dynamical chiral symmetry
breaking, i.e. we collect only the terms whose contribu-
tions to the effective potential survive at Λ → ∞. We get

this information by contracting quark lines in Li, find-
ing that this term contributes to the power counting of Λ
in the effective potential as ∼ Λ2β−γ , i.e. we obtain that
2β − γ ≥ 0 (we used the fact that in four dimensions each
quark loop contributes as Λ2).

Combining both restrictions we come to the conclusion
that only vertices with

α + β ≤ 4 (2)

must be taken into account in the approximation consid-
ered. On the basis of this inequality one can conclude that
i) there are only four classes of vertices which contribute
at α = 0; those are four- six- and eight-quark interac-
tions, corresponding to β = 2, 3 and 4, respectively; the
β = 1 class is forbidden by chiral symmetry requirements;
ii) there are only six classes of vertices depending on exter-
nal sources χ, they are α = 1, β = 1, 2, 3; α = 2, β = 1, 2;
and α = 3, β = 1.

Let us consider now the structure of multi-quark ver-
tices in detail. The Lagrangian corresponding to the case
i) is well known,

Lint =
Ḡ

Λ2
tr

(
Σ†Σ

)
+

κ̄

Λ5

(
det Σ + det Σ†)

+
ḡ1

Λ8

(
tr Σ†Σ

)2
+

ḡ2

Λ8
tr

(
Σ†ΣΣ†Σ

)
. (3)

It contains four dimensionful couplings G,κ, g1, g2.
The second group ii) contains eleven terms

Lχ =
10∑

i=0

Li, (4)

where

L0 = − tr
(
Σ†χ + χ†Σ

)

L1 = − κ̄1

Λ
eijkemnlΣimχjnχkl + h.c.

L2 =
κ̄2

Λ3
eijkemnlχimΣjnΣkl + h.c.

L3 =
ḡ3

Λ6
tr

(
Σ†ΣΣ†χ

)
+ h.c.

L4 =
ḡ4

Λ6
tr

(
Σ†Σ

)
tr

(
Σ†χ

)
+ h.c.

L5 =
ḡ5

Λ4
tr

(
Σ†χΣ†χ

)
+ h.c.

L6 =
ḡ6

Λ4
tr

(
ΣΣ†χχ† + Σ†Σχ†χ

)

L7 =
ḡ7

Λ4

(
tr Σ†χ + h.c.

)2

L8 =
ḡ8

Λ4

(
tr Σ†χ − h.c.

)2

L9 = − ḡ9

Λ2
tr

(
Σ†χχ†χ

)
+ h.c.

L10 = − ḡ10

Λ2
tr

(
χ†χ

)
tr

(
χ†Σ

)
+ h.c. (5)

Each term in the Lagrangian L6 is hermitian by itself,
but because of the parity symmetry of strong interactions,
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which transforms one of them into the other, they have a
common coupling ḡ6.

Some useful insight into the Lagrangian above can be
obtained by considering it from the point of view of the
1/Nc expansion. Indeed, the number of color components
of the quark field qi is Nc, hence summing over color in-
dices in Σ gives a factor of Nc, i.e. one counts Σ ∼ Nc.

The cut-off Λ that gives the right dimensionality to the
multi-quark vertices scales as Λ ∼ N0

c = 1. On the other
hand, since the leading quark contribution to the vacuum
energy is known to be of order Nc, the first term in (3) is
estimated as Nc, and we conclude that G ∼ 1/Nc.

Furthermore, the U(1)A anomaly contribution (the
second term in (3)) is suppressed by one power of 1/Nc,
it yields κ ∼ 1/N3

c .
The last two terms in (3) have the same Nc count-

ing as the ’t Hooft term. They are of order 1. Indeed,
Zweig’s rule violating effects are always of order 1/Nc

with respect to the leading-order contribution ∼ Nc. This
reasoning helps us to find g1 ∼ 1/N4

c . The term with
g2 ∼ 1/N4

c is also 1/Nc suppressed. It represents the next
to the leading-order contribution with one internal quark
loop in Nc counting. Such vertex contains the admixture
of the four-quark component q̄qq̄q to the leading quark-
antiquark structure at Nc → ∞.

Next, all terms in eq. (5), except L0, are of order
1. The argument is just the same as before: this part
of the Lagrangian is obtained by succesive insertions of
the χ-field (χ counts as χ ∼ 1) in place of Σ fields in
the already known 1/Nc suppressed vertices. It means
that κ1, g9, g10 ∼ 1/Nc, κ2, g5, g6, g7, g8 ∼ 1/N2

c , and
g3, g4 ∼ 1/N3

c .
There are two important conclusions here. The first is

that at leading order in 1/Nc only two terms contribute:
the first term of eq. (3), and the first term of eq. (5). This
corresponds exactly to the standard NJL model picture,
where mesons are pure q̄q states. At the next to leading
order we have thirteen terms additionally. They trace the
Zweig’s rule violating effects (κ, κ1, κ2, g1, g4, g7, g8, g10),
and an admixture of the four-quark component to the q̄q
one (g2, g3, g5, g6, g9). Only the phenomenology of the last
three terms from eq. (3) has been studied until now. We
must still understand the role of the other ten terms to be
consistent with the generic 1/Nc expansion of QCD.

The second conclusion is that the Nc counting justifies
the classification of the vertices made above on the basis
of the inequality (2). This is seen as follows: the equivalent
inequality �(α + β)/2	 ≤ 2 is obtained by restricting the
multi-quark Lagrangian to terms that do not vanish at
Nc → ∞ (it follows from (1) that β−�γ/2	 ≥ 0 by noting
that ḡi ∼ 1/N

�γ/2�
c , where �γ/2	 is the nearest integer

greater than or equal to γ/2).
The total Lagrangian is the sum

L = q̄iγμ∂μq + Lint + Lχ. (6)

In this SU(3)L×SU(3)R symmetric chiral Lagrangian we
neglect terms with derivatives in the multi-quark inter-
actions, as usually assumed in the NJL model. We fol-
low this approximation, because the specific questions for

which these terms might be important, e.g., the radial me-
son excitations, or the existence of some inhomogeneous
phases, characterized by a spatially varying order param-
eter, are not the goal of this work.

Finally, having all the building blocks conform with
the symmetry content of the model, one is now free to
choose the external source χ. Putting χ = M/2, where

M = diag(μu, μd, μs),

we obtain a consistent set of explicitly breaking chiral sym-
metry terms. This leads to the following mass-dependent
part of the NJL Lagrangian:

Lχ → Lμ = −q̄mq +
8∑

i=2

L′
i, (7)

where the current quark mass matrix m is equal to

m = M +
κ̄1

Λ
(detM)M−1 +

ḡ9

4Λ2
M3

+
ḡ10

4Λ2

(
trM2

)
M, (8)

and
L′

2 = κ̄2
2Λ3 eijkemnlMimΣjnΣkl + h.c.

L′
3 = ḡ3

2Λ6 tr
(
Σ†ΣΣ†M

)
+ h.c.

L′
4 = ḡ4

2Λ6 tr
(
Σ†Σ

)
tr

(
Σ†M

)
+ h.c.

L′
5 = ḡ5

4Λ4 tr
(
Σ†MΣ†M

)
+ h.c.

L′
6 = ḡ6

4Λ4 tr
[
M2

(
ΣΣ† + Σ†Σ

)]

L′
7 = ḡ7

4Λ4

(
tr Σ†M + h.c.

)2

L′
8 = ḡ8

4Λ4

(
tr Σ†M− h.c.

)2
.

(9)

Let us note that there is a definite freedom in the def-
inition of the external source χ. In fact, the sources

χ(ci) = χ +
c1

Λ

(
det χ†) χ

(
χ†χ

)−1
+

c2

Λ2
χχ†χ

+
c3

Λ2
tr

(
χ†χ

)
χ, (10)

with three independent constants ci have the same sym-
metry transformation property as χ. Therefore, we could
have used χ(ci) everywhere that we used χ. As a result,
we would come to the same Lagrangian with the following
redefinitions of couplings:

κ̄1 → κ̄′
1 = κ̄1 +

c1

2
, ḡ5 → ḡ′5 = ḡ5 − κ̄2c1,

ḡ7 → ḡ′7 = ḡ7 +
κ̄2

2
c1, ḡ8 → ḡ′8 = ḡ8 +

κ̄2

2
c1,

ḡ9 → ḡ′9 = ḡ9 + c2 − 2κ̄1c1,

ḡ10 → ḡ′10 = ḡ10 + c3 + 2κ̄1c1. (11)

Since ci are arbitrary parameters, this corresponds to a
continuous family of equivalent Lagrangians. This family
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reflects the known Kaplan-Manohar ambiguity [34–37] in
the definition of the quark mass, and means that several
different parameter sets (11) may be used to represent
the data. In particular, without loss of generality we can
use the reparametrization freedom to obtain the set with
κ̄′

1 = ḡ′9 = ḡ′10 = 0.
The effective multi-quark Lagrangian can be written

now as

L = q̄(iγμ∂μ − m)q + Lint +
8∑

i=2

L′
i. (12)

It contains eighteen parameters: the scale Λ, three pa-
rameters which are responsible for explicit chiral sym-
metry breaking μu, μd, μs, and fourteen interaction cou-
plings Ḡ, κ̄, κ̄1, κ̄2, ḡ1, . . . , ḡ10. Three of them, κ̄1, ḡ9, ḡ10,
contribute to the current quark masses m. Seven more
describe the strength of multi-quark interactions with ex-
plicit symmetry-breaking effects. These vertices contain
new details of the quark dynamics which have not been
studied yet in any NJL-type models.

3 From quarks to mesons: stationary phase
calculations

The model can be solved by path integral bosonization
of this quark Lagrangian. Indeed, following [7] we may
equivalently introduce auxiliary fields sa = q̄λaq, pa =
q̄iγ5λaq, and physical scalar and pseudoscalar fields σ =
σaλa, φ = φaλa. In these variables the Lagrangian is a
bilinear form in quark fields (once the replacement has
been done the quarks can be integrated out giving us the
kinetic terms for the physical fields φ and σ),

L = q̄ [iγμ∂μ − (σ + iγ5φ)] q + Laux,

Laux = saσa + paφa − sama + Lint(s, p)

+
8∑

i=2

L′
i(s, p, μ). (13)

It is clear, that after the elimination of the fields σ, φ
by means of their classical equations of motion, one can
rewrite this Lagrangian in its original form (12). On the
other hand, written in terms of auxiliary bosonic variables,
the Lagrangian becomes

Lint(s, p) = L4q + L6q + L
(1)
8q + L

(2)
8q ,

L4q(s, p) =
Ḡ

2Λ2

(
s2

a + p2
a

)
,

L6q(s, p) =
κ̄

4Λ5
Aabcsa(sbsc − 3pbpc), (14)

L
(1)
8q (s, p) =

ḡ1

4Λ8

(
s2

a + p2
a

)2
,

L
(2)
8q (s, p) =

ḡ2

8Λ8
[dabedcde (sasb + papb) (scsd + pcpd)

+ 4fabefcdesascpbpd] ,

and the quark-mass–dependent part is as follows:

L′
2 =

3κ̄2

2Λ3
Aabcμa (sbsc − pbpc) ,

L′
3 =

ḡ3

4Λ6
μa [dabedcdesb (scsd + pcpd) − 2fabefcdepbpcsd] ,

L′
4 =

ḡ4

2Λ6
μbsb

(
s2

a + p2
a

)
,

L′
5 =

ḡ5

4Λ4
μbμd (dabedcde − fabefcde) (sasc − papc) ,

L′
6 =

ḡ6

4Λ4
μaμbdabedcde (scsd + pcpd) ,

L′
7 =

ḡ7

Λ4
(μasa)2 ,

L′
8 =− ḡ8

Λ4
(μapa)2 , (15)

where

Aabc =
1
3!

eijkemnl(λa)im(λb)jn(λc)kl, (16)

and the U(3) antisymmetric fabc and symmetric dabc con-
stants are standard.

Our final goal is to clarify the role of the mass-
dependent terms described by the Lagrangian densites
of eq. (15). We can gain some understanding of this by
considering the low-energy meson dynamics which follows
from our Lagrangian. For that we must exclude quark de-
grees of freedom in (13), e.g., by integrating them out
from the corresponding generating functional. The stan-
dard Gaussian path integral leads us to the fermion de-
terminant, which we expand by using a heat-kernel tech-
nique [38–41]. The remaining part of the Lagrangian,
Laux, depends on auxiliary fields which do not have kinetic
terms. The equations of motion of such a static system are
the extremum conditions,

∂L

∂sa
= 0,

∂L

∂pa
= 0, (17)

which must be fulfilled in the neighbourhood of the uni-
form vacuum state of the theory. To take this into account
one should shift the scalar field σ → σ + M . The new
σ-field has a vanishing vacuum expectation value 〈σ〉 = 0,
describing small amplitude fluctuations about the vac-
uum, with M being the mass of constituent quarks. We
seek solutions of eq. (17) in the form

sst
a = ha + h

(1)
ab σb + h

(1)
abcσbσc + h

(2)
abcφbφc + . . .

pst
a = h

(2)
ab φb + h

(3)
abcφbσc + . . . (18)

Equations (17) determine all coefficients of this expan-
sion giving rise to a system of cubic equations to obtain
ha, and the full set of recurrence relations to find higher-
order coefficients in (18). We can gain some insight into
the physical meaning of these parameters if we calculate
the Lagrangian density Laux on the stationary trajectory.
In fact, using the recurrence relations, we are led to the
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result

Laux = haσa +
1
2

h
(1)
ab σaσb +

1
2

h
(2)
ab φaφb (19)

+
1
3

σa

[
h

(1)
abcσbσc +

(
h

(2)
abc + h

(3)
bca

)
φbφc

]
+ . . .

From this one can see that ha define the quark conden-
sates, h

(1)
ab , h

(2)
ab contribute to the masses of scalar and

pseudoscalar states, and higher order h’s are the couplings
that measure the strength of the meson-meson interac-
tions.

We proceed now to explain the details of determining
h. In the following only the first coefficients ha, h

(1)
ab , and

h
(2)
ab will be of interest to us. In particular, eq. (17) states

that ha = 0, if a �= 0, 3, 8, while hα (α = 0, 3, 8), after the
convenient redefinition to the flavor indices i = u, d, s,

hα = eαihi, eαi =
1

2
√

3

⎛

⎝

√
2

√
2

√
2√

3 −
√

3 0
1 1 −2

⎞

⎠ , (20)

satisfy the following system of cubic equations:

Δi +
κ

4
tijkhjhk +

hi

2
(
2G + g1h

2 + g4μh
)

+
g2

2
h3

i

+
μi

4
[
3g3h

2
i + g4h

2 + 2(g5 + g6)μihi + 4g7μh
]

+κ2tijkμjhk = 0. (21)

Here Δi = Mi − mi; tijk is a totally symmetric quantity,
whose nonzero components are tuds = 1; there is no sum-
mation over the open index i but we sum over the dummy
indices, e.g., h2 = h2

u +h2
d +h2

s, μh = μuhu +μdhd +μshs.
In particular, eq. (8) reads in this basis

mi = μi

(
1 +

g9

4
μ2

i +
g10

4
μ2

)
+

κ1

2
tijkμjμk. (22)

For the set g9 = g10 = κ1 = 0 the current quark mass mi

coincides precisely with the explicit symmetry-breaking
parameter μi.

Note that the factor multiplying hi in the third term
of eq. (21) is the same for each flavor. This quantity also
appears in all meson mass expressions, and there is no
further dependence on the couplings G, g1, g4 involved for
meson states with a = 1, . . . , 7. Thus there is a freedom of
choice which allows to vary these couplings, condensates
and quark masses μi, without altering this part of the
meson mass spectrum.

It is now straightforward to obtain the inverse matrices
to h

(1)
ab and h

(2)
ab , namely,

−2
(
h

(1)
ab

)−1

=
(
2G + g1h

2 + g4μh
)
δab + 4g1hahb

+3Aabc (κhc + 2κ2μc) + g2hrhc (dabedcre + 2dacedbre)
+g3μrhc (dabedcre + dacedbre + daredbce)
+2g4 (μahb + μbha) + g5μrμc (daredbce − farefbce)
+g6μrμcdabedcre + 4g7μaμb, (23)

−2
(
h

(2)
ab

)−1

=
(
2G + g1h

2 + g4μh
)
δab

−3Aabc (κhc + 2κ2μc) + g2hrhc (dabedcre + 2farefbce)
+g3μrhc (dabedcre + farefbce + facefbre)
−g5μrμc (daredbce − farefbce)
+g6μrμcdabedcre − 4g8μaμb. (24)

These coefficients are totally defined in terms of ha and
the parameters of the model.

4 From quarks to mesons: heat kernel
calculations

We now turn our attention to the total Lagrangian of
the bosonized theory. To write down this Lagrangian we
should add the terms coming from integrating out the
quark degrees of freedom in (13) to our result (19). For-
tunately, the result is known. One can find all necessary
details of such calculations, for instance, in [38], where we
used the modified heat kernel technique [39–41] developed
for the case of explicit chiral symmetry breaking. Here we
quote the main outcome. The σ tadpole term must be ex-
cluded from the total Lagrangian. This gives us a system
of gap equations,

hi +
Nc

6π2
Mi

[
3I0 −

(
3M2

i − M2
)
I1

]
= 0. (25)

Here Nc = 3 is the number of colors, and M2 = M2
u+M2

d +
M2

s . The factors Ii (i = 0, 1, . . .) are the arithmetic average
values Ii = 1

3 [Ji(M2
u) + Ji(M2

d ) + Ji(M2
s )], constructed

from the one-quark-loop integrals

Ji(m2) =

∞∫

0

dt

t2−i
ρ(tΛ2)e−tm2

, (26)

with the Pauli-Villars regularization kernel [42,43]

ρ(tΛ2) = 1 − (1 + tΛ2) exp(−tΛ2). (27)

In the following we need only to know two of them:

J0(m2) = Λ2 − m2 ln
(

1 +
Λ2

m2

)
(28)

and

J1(m2) = ln
(

1 +
Λ2

m2

)
− Λ2

Λ2 + m2
. (29)

From now on we will consider the case with an ex-
act SU(2) isospin symmetry, i.e. μu = μd = μ̂ �= μs,
and Mu = Md = M̂ �= Ms. We also restrict ourselves to
small perturbations, so we retain terms in the bosonized
Lagrangian which are quadratic in the perturbations φ
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and σ. To this order we obtain

L =
NcI1

16π2
tr

[
(∂μσ)2 + (∂μφ)2

]
+

NcI0

4π2

(
σ2

a + φ2
a

)

−NcI1

12π2

{
Δns

[
2
√

2(3σ0σ8 + φ0φ8) − φ2
8 + φ2

i

]

+2(2M̂2 + M2
s )σ2

0 + (M̂2 + 5M2
s )σ2

8

+(7M̂2 − M2
s )σ2

i + (M̂ + Ms)(M̂ + 2Ms)σ2
f

+(Ms − M̂)(2Ms − M̂)φ2
f

}

+
1
2

h
(1)
ab σaσb +

1
2

h
(2)
ab φaφb + . . . , (30)

where Δns = M̂2 − M2
s , φ2

i =
∑3

i=1 φ2
i , φ2

f =
∑7

f=4 φ2
f .

The kinetic term requires a redefinition of meson fields,

σa = gσR
a , φa = gφR

a , g2 =
4π2

NcI1
, (31)

to obtain the standard factor 1/4. The Lagrangian (30)
in the chiral limit, m = 0, leads to the conserved vector,
Va

μ, and axial-vector, Aa
μ, currents. The matrix elements

of axial-vector currents,

〈0|Aa
μ(0)|φb

R(p)〉 = ipμfab, (32)

define the weak and electromagnetic decay constants of
physical pseudoscalar states (see details in [38]). In fact,
we obtain that all new information about the mass-
dependent interactions is explicitly absorbed in the last
two terms of the Lagrangian, where the matrices h

(1,2)
ab

are block diagonal and mix only in the (0, 8) sector, see
eqs. (23) and (24). There is also an implicit dependence
through the gap and stationary phase equations.

5 Fixing parameters

Now let us fix the values of the various quantities intro-
duced. After choosing the set κ1 = g9 = g10 = 0 we
still have to fix fourteen parameters: Λ, m̂,ms, G, κ, κ2 and
g1, . . . , g8. Note that there are two intrinsic restrictions
of the model, namely, the stationary phase (21) and the
gap (25) equations, which must be solved self-consistently.
This is how the explicit symmetry breaking is intertwined
with the dynamical symmetry breaking and vice versa.
We use (25) to determine ĥ, hs through Λ,Ms and M̂ .
The ratio Ms/M̂ is related to the ratio of the weak de-
cay constants of the pion, fπ = 92MeV, and the kaon,
fK = 113MeV. Here we obtain

Ms

M̂
= 2

fK

fπ
− 1 = 1.46. (33)

Furthermore, the two eqs. (21) can be used to find the
values of Λ and M̂ if the parameters m̂, ms, G, κ, κ2,
g1, . . . , g7 are known. Thus, together with g8 we have at
this stage thirteen couplings to be fixed. Let us consider
the current quark masses m̂ and ms to be an input. Their

values are known, from various analyses of the chiral treat-
ment of the light pseudoscalars, to be around m̂ = 4MeV
and ms = 100MeV [44]. Then the remaining eleven cou-
plings can be found by comparing with empirical data.
One should stress the possibility (which did not exist
before the inclusion of mass-dependent interactions) to
fit the low-lying pseudoscalar spectrum, mπ = 138MeV,
mK = 494MeV, mη = 547MeV, mη′ = 958MeV, the
weak pion and kaon decay constants, fπ = 92MeV, fK =
113MeV, and the singlet-octet mixing angle θp = −15◦
to perfect accuracy. One can deduce that the couplings
κ2 and g8 are essential to improve the description in the
pseudoscalar sector; in particular, g8 is responsible for fine
tuning the η − η′ mass splitting.

The remaining five conditions are taken from the scalar
sector of the model. Unfortunately, the scalar channel in
the region about 1GeV became a long-standing problem
of QCD. The abundance of meson resonances with 0++

quantum numbers shows that one can expect the pres-
ence of non-qq̄ scalar objects, like glueballs, hybrids, mul-
tiquark states and so forth [45]. This creates known dif-
ficulties in the interpretation and classification of scalars.
For instance, the numerical attempts to organize the U(3)
quark-antiquark nonet based on the light scalar mesons, σ
or f0(600), a0(980), κ(850), f0(980), in the framework of
NJL-type models have failed (see, e.g., [8–10, 43, 46–48]).
The reason is the ordering of the calculated spectrum
which typically is mσ < ma0 < mκ < mf0 , as opposed
to the empirical evidence: mκ < ma0 � mf0 .

On the other hand, it is known that a unitarized non-
relativistic meson model can successfully describe the light
scalar meson nonet as q̄q states with a meson-meson ad-
mixture [49]. Another model which assumes the mixing of
qq̄ states with others, consisting of two quarks and two an-
tiquarks, q2q̄2 [50], yields a possible description of the 0++

meson spectra as well [51, 52]. The well-known model of
Close and Törnqvist [53] is also designed to describe two
scalar nonets (above and below 1GeV). The light scalar
nonet below 1GeV has a core made of q2q̄2 states with a
small admixture of a q̄q component, rearranged asymptot-
ically as meson-meson states. These successful solutions
seemingly indicate on the importance of certain admix-
tures for the correct description of the light scalars. Our
model contains such admixtures in the form of the ap-
propriate effective multi-quark vertices with the asymp-
totic meson states described by the bosonized q̄q fields. We
have found, that the quark-mass–dependent interactions
can solve the problem of the light scalar spectrum and
these masses can be understood in terms of spontaneous
and explicit chiral symmetry breaking only. Indeed, one
can easily fit the data: mσ = 600MeV, ma0 = 980MeV,
mκ = 850MeV, mf0 = 980MeV with the input value
g2 = 0. In this case we obtain for the singlet-octet mixing
angle θs roughly θs = 19◦.

To many readers our success with scalars may seem
trivial: we have five parameters to fit five numbers. What
is not trivial, however, is that the overall result of the
fit is also in an agreement with phenomenological expec-
tations. To compare, if we try instead to fit the second
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Table 1. Parameter sets of the model: m̂, ms, and Λ are given in MeV. The couplings have the following units: [G] = GeV−2,

[κ] = GeV−5, [g1] = [g2] = GeV−8. We also show here the values of constituent quark masses M̂ and Ms in MeV.

Sets m̂ ms M̂ Ms Λ G −κ g1 g2

(a) 4.0* 100* 361 526 837 8.96 93.0 1534 0*
(b) 4.0* 100* 361 526 837 7.06 93.3 3420 0*

Table 2. Explicit symmetry-breaking interaction couplings. The couplings have the following units: [κ1] = GeV−1, [κ2] =
GeV−3, [g3] = [g4] = GeV−6, [g5] = [g6] = [g7] = [g8] = GeV−4, [g9] = [g10] = GeV−2.

Sets κ1 κ2 −g3 −g4 g5 −g6 −g7 g8 g9 g10

(a) 0* 9.05 4967 661 192.2 1236 293 52.2 0* 0*
(b) 0* 9.01 4990 653 192.5 1242 293 51.3 0* 0*

scalar nonet f0(1370), a0(1450),K∗
0 (1430), f0(1500) with

the same input, our attempt fails. The best that we can
do is the values mf0 = 1220MeV, ma0 = 1406MeV,
mK∗

0
= 1506MeV, mf ′

0
= 1786MeV. However, even these

unreasonable masses come out only together with the very
large ratio ms/m̂ = 36 and phenomenologically unaccept-
able values for constituent quark masses M̂ = 631MeV
and Ms = 919MeV.

We obtain and understand the empirical mass assign-
ment inside the light scalar nonet as a consequence of
the quark-mass–dependent interactions, i.e. as the result
of some predominance of the explicit chiral symmetry-
breaking terms over the dynamical chiral symmetry-
breaking ones for these states. Indeed, let us consider the
difference

m2
a0

− m2
κ = 2g2

(
1

Ha0

− 1
Hκ

)

−2(Ms + 2M̂)(Ms − M̂). (34)

The sign of this expression is a result of the competition
of two terms. In the chiral limit both of them are zero,
since at μ̂, μs = 0 we obtain M̂ = Ms and Ha0 = Hκ, for
Ha0 and Hκ being positive. The splitting Hκ > Ha0 is a
necessary condition to get ma0 > mκ. The following terms
contribute to the difference:

Hκ−Ha0 =κ(hs − ĥ) + 2κ2(μs − μ̂) − g2(h2
s + ĥhs − 2ĥ2)

+
g3

2

(
2μshs + μsĥ + μ̂hs − 4μ̂ĥ

)

+g5μ̂(μs − μ̂) +
g6

2
(
μ2

s − μ̂2
)
. (35)

Accordingly, from this formula we deduce the “anatomy”
of the successful numerical fit,

m2
a0

− m2
κ = ([0.007]κ + [0.076]κ2 + [0]g2

+[0.832]g3 + [0.003]g5 + [−0.269]g6

− [0.41]M = 0.24) GeV2, (36)

where the contributions of terms with corresponding cou-
pling (see eq. (35)) are indicated in square brackets. The
last number, marked by M , is the value of the last term
from (34). It is a contribution due to the dynamical chiral
symmetry breaking (in the presence of an explicit chiral

symmetry breaking). One can see that the g3 interaction
is the main reason for the reverse ordering ma0 > mκ, the
coupling g6 being responsible for the fine tuning of the
result.

Let us now show the result of our global fitting of the
model parameters. We collect them in two tables. Two
sets, (a) and (b), are shown. The difference is the fit-
ted value of the σ mass: in (a) mσ = 600MeV, in (b)
mσ = 500MeV. Table 1 contains the standard set of pa-
rameters, which are known from previous considerations.
Their values are not much affected by the quark mass ef-
fects. Table 2 contains the couplings which are responsible
for the explicit chiral symmetry-breaking effects in the in-
teractions. Note that these couplings almost do not change
from set (a) to (b). We have already learned (as can be
seen, again, in table 1) that higher values of g1 lead to the
lower σ mass [38]. This eight-quark interaction violates
Zweig’s rule, since it involves qq̄ annihilation. The mixing
angle θs is stable with respect to such changes, we obtain
θs = 19.4◦ in case (a), and θs = 18.9◦ in case (b). The cal-
culated values of quark condensates are the same for both
sets: −〈ūu〉 1

3 = 232MeV, and −〈s̄s〉 1
3 = 206MeV. Our

calculated values for constituent quark masses agree with
the ones found in [8–10,33], showing their insensitivity to
the new mass-dependent corrections.

6 Concluding remarks

The purpose of this paper has been to take into account
the quark masses at next-to-leading order in the expansion
of the effective multi-quark Lagrangian of the NJL type.
As a result a picture with some attractive new features has
emerged. Let us summarize the details of such a picture.

The main qualitative difference between our result and
previous calculations is the possibility to fit the low-lying
pseudoscalar spectrum (the pseudo-Goldstone 0−+ nonet)
and weak decay constants of the pion and the kaon to per-
fect accuracy. The fitting of the η − η′ mass splitting to-
gether with the overall successful description of the whole
set of low-energy characteristics is actually a solution for
a long-standing problem of NJL-type models. We expect
that with such modifications the model is getting more ap-
propriate not only for studying low-energy meson physics,
but also in studies of the ground state of hadronic matter
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in an environment, which is known to be very sensitive to
quark mass effects.

With a set of new quark-mass–dependent interactions
we are also capable to describe the spectrum of the light
scalar nonet. From that one can conclude that both spec-
tra can be understood on the basis of the dynamical and
explicit chiral symmetry breaking only. The splitting in-
side the scalar nonet is determined by two competing con-
tributions: first it is due to the explicit symmetry breaking
(embodied in the stationary phase part of the bosonized
Lagrangian), second, it is due to the dynamical symmetry
breaking (see the heat kernel part of the bosonized La-
grangian). It is the first type of contribution that changes
the ordering inside the light scalar nonet, as compared to
the standard approach.

Our result for the scalar sector, being promising by it-
self, must be considered with some reservation. To report
about a real success here, one should explain not only the
mass spectrum of scalars, particularly the mass degener-
acy of the f0(980) and a0(980) states (as we have done
here), but answer some known challenges related with ra-
diative decays of these states. Work in this direction is in
progress.
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