15 research outputs found
Functional characterization of the transcription factor early growth response 1 (Egr1) in arteriogenesis
The number of patients suffering from obstructive arterial disease is still increasing. Stimulation of a patient’s collateralization (arteriogenesis), though an auspicious therapeutic approach, is still not part of current therapy regimes. Further studies on the molecular level are needed to understand the genetic regulation in this process. The transcription factor early growth response 1 (Egr1) was shown to partic-ipate in leukocyte recruitment and cell proliferation in vitro. This work contributes to the acquisition of new insights into its mode of action in vivo.
Using a model of peripheral arteriogenesis, Egr1 was found significantly upregulated in growing col-laterals of wild-type mice (WT), both on mRNA (2.24fold) and protein level (2.3fold). Egr1 stained positive in EC and vSMCs of collaterals as well as in nerves. In LDI measurements conducted over the period of 21 days evidenced a delayed perfusion recovery after femoral artery ligation in Egr1-/- mice compared to WT mice (day7: 0.46±0.05 in Egr1-/- vs. WT (0.73±0.04), day 14: 0.65±0.02 in Egr1-/- vs. 0.88±0.04 in WT and day 21: 0.79 ±0.03 in Egr1-/- vs. 0.96±0.02 in WT). Under baseline conditions, Egr1-/- showed increased levels of monocytes (521.89±52.9 cells/µl vs. 326.56±21.6 cells/µl in WT) and granulocytes (811.79±79.96 cells/µl vs. WT 559.88±34.57 cells/µl) in the circulation but reduced levels in adductor muscles (18.14±2.73 cells/µl vs. 51.22±4.38 cells/µl in WT) as evidenced by FACS analyses. After femoral artery ligation, more macrophages were detected in the perivascular space of collateral arteries in Egr1-/- (8.10±0.99 per vessel) vs. WT (6.12±0.45 per vessel) mice. The mRNA of leukocyte recruitment mediators monocyte chemoattractant protein 1 (MCP-1), intercellular adhesion molecule 1 (ICAM-1) and urokinase plasminogen activator (uPA) were found upregulated in both groups. Whereas other Egr family members (Egr2-4) did not show an upregulation in WT collateral arteries, they were found significantly upregulated in Egr1-/- mice suggesting a mechanism of counter-balancing Egr1 deficiency. A closer look at cell cycle regulators revealed that cyclin E and cdc20 were found upregulated in WT as well as in Egr1-/- mice. However, cyclin D1 was hardly detectable under Egr1 deficiency conferring Egr1 an unique role for cyclin D1 transcription. vSMC phenotype switch is a critical step towards vSMC proliferation and therefore arteriogenesis. In this context, the downregu-lation of alpha smooth muscle actin (αSM-actin) and of the transcriptional repressor, splicing factor-1 (SF-1) has been shown to be critical in vitro. During arteriogenesis, SF-1 has been found downregulat-ed in collaterals of WT mice but was 1.64fold upregulated in Egr1-/-. Similar was true for αSM-actin. Whereas in WT mice αSM-actin is downregulated at 12h after ligation Egr1 deficient mice evidenced an upregulation of αSM-actin. The strong upregulation of the nonselective proliferation marker ki67 in WT mice was not detectable under Egr1 deficiency evidencing furthermore a delay in vascular cell proliferation. Conclusion: Compensation for deficiency of Egr1 function in leukocyte recruitment can be mediated by other transcription factors; however, Egr1 is indispensable for effective vascular cell cycle progression and phenotype switch in arteriogenesis
Functional characterization of the transcription factor early growth response 1 (Egr1) in arteriogenesis
The number of patients suffering from obstructive arterial disease is still increasing. Stimulation of a patient’s collateralization (arteriogenesis), though an auspicious therapeutic approach, is still not part of current therapy regimes. Further studies on the molecular level are needed to understand the genetic regulation in this process. The transcription factor early growth response 1 (Egr1) was shown to partic-ipate in leukocyte recruitment and cell proliferation in vitro. This work contributes to the acquisition of new insights into its mode of action in vivo.
Using a model of peripheral arteriogenesis, Egr1 was found significantly upregulated in growing col-laterals of wild-type mice (WT), both on mRNA (2.24fold) and protein level (2.3fold). Egr1 stained positive in EC and vSMCs of collaterals as well as in nerves. In LDI measurements conducted over the period of 21 days evidenced a delayed perfusion recovery after femoral artery ligation in Egr1-/- mice compared to WT mice (day7: 0.46±0.05 in Egr1-/- vs. WT (0.73±0.04), day 14: 0.65±0.02 in Egr1-/- vs. 0.88±0.04 in WT and day 21: 0.79 ±0.03 in Egr1-/- vs. 0.96±0.02 in WT). Under baseline conditions, Egr1-/- showed increased levels of monocytes (521.89±52.9 cells/µl vs. 326.56±21.6 cells/µl in WT) and granulocytes (811.79±79.96 cells/µl vs. WT 559.88±34.57 cells/µl) in the circulation but reduced levels in adductor muscles (18.14±2.73 cells/µl vs. 51.22±4.38 cells/µl in WT) as evidenced by FACS analyses. After femoral artery ligation, more macrophages were detected in the perivascular space of collateral arteries in Egr1-/- (8.10±0.99 per vessel) vs. WT (6.12±0.45 per vessel) mice. The mRNA of leukocyte recruitment mediators monocyte chemoattractant protein 1 (MCP-1), intercellular adhesion molecule 1 (ICAM-1) and urokinase plasminogen activator (uPA) were found upregulated in both groups. Whereas other Egr family members (Egr2-4) did not show an upregulation in WT collateral arteries, they were found significantly upregulated in Egr1-/- mice suggesting a mechanism of counter-balancing Egr1 deficiency. A closer look at cell cycle regulators revealed that cyclin E and cdc20 were found upregulated in WT as well as in Egr1-/- mice. However, cyclin D1 was hardly detectable under Egr1 deficiency conferring Egr1 an unique role for cyclin D1 transcription. vSMC phenotype switch is a critical step towards vSMC proliferation and therefore arteriogenesis. In this context, the downregu-lation of alpha smooth muscle actin (αSM-actin) and of the transcriptional repressor, splicing factor-1 (SF-1) has been shown to be critical in vitro. During arteriogenesis, SF-1 has been found downregulat-ed in collaterals of WT mice but was 1.64fold upregulated in Egr1-/-. Similar was true for αSM-actin. Whereas in WT mice αSM-actin is downregulated at 12h after ligation Egr1 deficient mice evidenced an upregulation of αSM-actin. The strong upregulation of the nonselective proliferation marker ki67 in WT mice was not detectable under Egr1 deficiency evidencing furthermore a delay in vascular cell proliferation. Conclusion: Compensation for deficiency of Egr1 function in leukocyte recruitment can be mediated by other transcription factors; however, Egr1 is indispensable for effective vascular cell cycle progression and phenotype switch in arteriogenesis
Hydroxyethyl starch 130/0.4 and its impact on perioperative outcome: a propensity score matched controlled observation study
BACKGROUND Adverse effects of hydroxyethyl starches (HESs) have been verified in patients suffering from sepsis or kidney disease, but not in surgical patients at large. The investigation aimed to determine whether the use of HES 130/0.4 was associated with the incidence of acute postinterventional adverse events compared to Ringer's acetate alone in a perioperative setting. METHODS This propensity score matched, controlled observational study was performed in a single-centre university hospital. The perioperative data of 9085 patients were analyzed. Group matching was based on 13 categories including demographic data, type of procedure, and 5 preexisting comorbidities. Duration of procedure and intraoperative transfusion requirements were integrated in the matching process to reduce selection and indication bias. The primary outcome was incidence of postoperative kidney failure. Secondary outcomes were in-hospital mortality, fluid requirements, blood loss, hemodynamic stability, and the need for postoperative intensive care unit (ICU) treatment. RESULTS The administration of HES 130/0.4 was not associated with an increased frequency of postoperative kidney failure. In-hospital mortality (Ringer's acetate: 2.58%; HES 130/0.4: 2.68%) and the need for ICU care (Ringer's acetate: 30.5%; HES 130/0.4: 34.3%) did not differ significantly between groups. Significant intergroup differences were observed for mean blood loss (Ringer's acetate: 406 ± 821 mL; HES 130/0.4: 867 ± 1275 mL; P < .001) and median length of hospital stay (Ringer's acetate: 10.5 (5/17) days; HES 130/0.4: 12.0 (8/19) days; P < .001). CONCLUSIONS An association between intraoperative HES therapy and postoperative kidney failure was not observed in a mixed cohort of elective surgical patients. In addition, HES 130/0.4 was not associated with an increased morbidity or the need for ICU therapy in this propensity score matched study
No Differences in Renal Function between Balanced 6% Hydroxyethyl Starch (130/0.4) and 5% Albumin for Volume Replacement Therapy in Patients Undergoing Cystectomy: a Randomized Controlled Trial
BACKGROUND The use of artificial colloids has declined in critical care, whereas they are still used in perioperative medicine. Little is known about the nephrotoxic potential in noncritically ill patients during routine surgery. The objective of this trial was to evaluate the influences of albumin 5% and balanced hydroxyethyl starch 6% (130/0.4) on renal function and kidney injury. METHODS One hundred urologic patients undergoing elective cystectomy were randomly assigned for this prospective, single-blinded, controlled study with two parallel groups to receive either albumin 5% or balanced hydroxyethyl starch 6% (130/0.4) as the only perioperative colloid. The primary endpoint was the ratio of serum cystatin C between the last visit at day 90 and the first preoperative visit. Secondary endpoints were estimated glomerular filtration rate and serum neutrophil gelatinase-associated lipocalin until the third postoperative day and risk, injury, failure, loss, and end-stage renal disease criteria at postoperative days 3 and 90. RESULTS The median cystatin C ratio was 1.11 (interquartile range, 1.01 to 1.23) in the albumin and 1.08 (interquartile range, 1.00 to 1.20) in the hydroxyethyl starch group (median difference = 0.03; 95% CI, -0.09 to 0.08; P = 0.165). Also, there were no significant differences concerning serum cystatin C concentrations; estimated glomerular filtration rate; risk, injury, failure, loss, and end-stage renal disease criteria; and neutrophil gelatinase-associated lipocalin. Infusion requirements, transfusion rates, and perioperative hemodynamics were similar in both groups. CONCLUSIONS With respect to renal function and kidney injury, this study indicates that albumin 5% and balanced hydroxyethyl starch 6% have comparable safety profiles in noncritically ill patients undergoing major surgery
The impact of phosphate-balanced crystalloid infusion on acid-base homeostasis (PALANCE study): study protocol for a randomized controlled trial
Background: This study aims to investigate the effects of a modified, balanced crystalloid including phosphate in a perioperative setting in order to maintain a stable electrolyte and acid-base homeostasis in the patient. Methods/design: This is a single-centre, open-label, randomized controlled trial involving two parallel groups of female patients comparing a perioperative infusion regime with sodium glycerophosphate and Jonosteril (R) (treatment group) or Jonosteril (R) (comparator) alone. The primary endpoint is to maintain a stable concentration of weak acids [A(-)] according to the Stewart approach of acid-base balance. Secondary endpoints are measurement of serum phosphate levels, other acid-base parameters such as the strong ion difference (SID), the onset and severity of postoperative nausea and vomiting (PONV), electrolyte levels and their excretion in the urine, monitoring of renal function and glycocalyx components, haemodynamics, amounts of catecholamines and other vasopressors used and the safety of the infusion regime. Discussion: Perioperative fluid replacement with the use of currently available crystalloid preparations still fail to maintain a stable acid-base balance and experts agree that common balanced solutions are still not ideal. This study aims to investigate the effectivity and safety of a new crystalloid solution by adding sodium glycerophosphate to a standardized crystalloid preparation in order to maintain a balanced perioperative acid-base homeostasis
Midkine Controls Arteriogenesis by Regulating the Bioavailability of Vascular Endothelial Growth Factor A and the Expression of Nitric Oxide Synthase 1 and 3
Midkine is a pleiotropic factor, which is involved in angiogenesis. However, its mode of action in this process is still ill defined. The function of midkine in arteriogenesis, the growth of natural bypasses from pre-existing collateral arteries, compensating for the loss of an occluded artery has never been investigated. Arteriogenesis is an inflammatory process, which relies on the proliferation of endothelial cells and smooth muscle cells. We show that midkine deficiency strikingly interferes with the proliferation of endothelial cells in arteriogenesis, thereby interfering with the process of collateral artery growth. We identified midkine to be responsible for increased plasma levels of vascular endothelial growth factor A (VEGFA), necessary and sufficient to promote endothelial cell proliferation in growing collaterals. Mechanistically, we demonstrate that leukocyte domiciled midkine mediates increased plasma levels of VEGFA relevant for upregulation of endothelial nitric oxide synthase 1 and 3, necessary for proper endothelial cell proliferation, and that non-leukocyte domiciled midkine additionally improves vasodilation. The data provided on the role of midkine in endothelial proliferation are likely to be relevant for both, the process of arteriogenesis and angiogenesis. Moreover, our data might help to estimate the therapeutic effect of clinically applied VEGFA in patients with vascular occlusive diseases
Disease Progression Mediated by Egr-1 Associated Signaling in Response to Oxidative Stress
When cellular reducing enzymes fail to shield the cell from increased amounts of reactive oxygen species (ROS), oxidative stress arises. The redox state is misbalanced, DNA and proteins are damaged and cellular transcription networks are activated. This condition can lead to the initiation and/or to the progression of atherosclerosis, tumors or pulmonary hypertension; diseases that are decisively furthered by the presence of oxidizing agents. Redox sensitive genes, like the zinc finger transcription factor early growth response 1 (Egr-1), play a pivotal role in the pathophysiology of these diseases. Apart from inducing apoptosis, signaling partners like the MEK/ERK pathway or the protein kinase C (PKC) can activate salvage programs such as cell proliferation that do not ameliorate, but rather worsen their outcome. Here, we review the currently available data on Egr-1 related signal transduction cascades in response to oxidative stress in the progression of epidemiologically significant diseases. Knowing the molecular pathways behind the pathology will greatly enhance our ability to identify possible targets for the development of new therapeutic strategies
Early Growth Response 1— A Transcription Factor in the crossfire of Signal Transduction Cascades
226-235Early growth response-1 (Egr-1) is a
Cys2-His2-type zinc-finger transcription factor. A broad range of extracellular
stimuli is capable of activating Egr-1, thus mediating growth, proliferation,
differentiation or apoptosis. Egr-1 is, therefore, participating in the
progression of a variety of diseases such as atherosclerosis or cancer.
Functional response elements connect Egr-1 to signal transduction cascades
targeting Egr-1. Five serum response elements (SRE) have been identified in the
promoter region of Egr-1, the binding region of serum response factor (SRF).
The Rho/Rho-kinase pathway has been shown to regulate actin reorganization via
LIM-kinase mediated cofilin phosphorylation. Recent studies have revealed that
the actin binding striated muscle activator of Rho signaling (STARS) promotes translocation
of myosin related transcription factors (MRTFs) into the nucleus, leading to
SRF activation. The ternary complex factor (TCF) Elk-1 eventually bridges the
gap between SRF-mediated gene transcription and the Raf/MEK/ERK pathway.
Moreover, the Egr-1 promoter owns two cAMP response elements (CREs), whose
relevance for gene expression is still unclear. An Egr-1 binding site (EBS)
located on the Egr-1 promoter itself is arguing for a negative feedback
mechanism. The acquired knowledge on transcriptional regulation of Egr-1 is not
entirely understood. In this review, we highlight upstream and downstream
signaling in vitro and in vivo associated with Egr-1
Midkine controls arteriogenesis by regulating the bioavailability of vascular endothelial growth factor A and the expression of nitric oxide synthase 1 and 3
Midkine is a pleiotropic factor, which is involved in angiogenesis. However, its mode of action in this process is still ill defined. The function of midkine in arteriogenesis, the growth of natural bypasses from pre-existing collateral arteries, compensating for the loss of an occluded artery has never been investigated. Arteriogenesis is an inflammatory process, which relies on the proliferation of endothelial cells and smooth muscle cells. We show that midkine deficiency strikingly interferes with the proliferation of endothelial cells in arteriogenesis, thereby interfering with the process of collateral artery growth. We identified midkine to be responsible for increased plasma levels of vascular endothelial growth factor A (VEGFA), necessary and sufficient to promote endothelial cell proliferation in growing collaterals. Mechanistically, we demonstrate that leukocyte domiciled midkine mediates increased plasma levels of VEGFA relevant for upregulation of endothelial nitric oxide synthase 1 and 3, necessary for proper endothelial cell proliferation, and that non-leukocyte domiciled midkine additionally improves vasodilation.
The data provided on the role of midkine in endothelial proliferation are likely to be relevant for both, the process of arteriogenesis and angiogenesis. Moreover, our data might help to estimate the therapeutic effect of clinically applied VEGFA in patients with vascular occlusive diseases
Additional file 1: of The impact of phosphate-balanced crystalloid infusion on acid-base homeostasis (PALANCE study): study protocol for a randomized controlled trial
SPIRIT Checklist. (PDF 175Ă‚Â kb