161 research outputs found

    A simple example of "Quantum Darwinism": Redundant information storage in many-spin environments

    Full text link
    As quantum information science approaches the goal of constructing quantum computers, understanding loss of information through decoherence becomes increasingly important. The information about a system that can be obtained from its environment can facilitate quantum control and error correction. Moreover, observers gain most of their information indirectly, by monitoring (primarily photon) environments of the "objects of interest." Exactly how this information is inscribed in the environment is essential for the emergence of "the classical" from the quantum substrate. In this paper, we examine how many-qubit (or many-spin) environments can store information about a single system. The information lost to the environment can be stored redundantly, or it can be encoded in entangled modes of the environment. We go on to show that randomly chosen states of the environment almost always encode the information so that an observer must capture a majority of the environment to deduce the system's state. Conversely, in the states produced by a typical decoherence process, information about a particular observable of the system is stored redundantly. This selective proliferation of "the fittest information" (known as Quantum Darwinism) plays a key role in choosing the preferred, effectively classical observables of macroscopic systems. The developing appreciation that the environment functions not just as a garbage dump, but as a communication channel, is extending our understanding of the environment's role in the quantum-classical transition beyond the traditional paradigm of decoherence.Comment: 21 pages, 6 figures, RevTex 4. Submitted to Foundations of Physics (Asher Peres Festschrift

    Parity Mixed Doublets in A = 36 Nuclei

    Full text link
    The γ\gamma-circular polarizations (PγP_{\gamma}) and asymmetries (AγA_{\gamma}) of the parity forbidden M1 + E2 γ\gamma-decays: 36Cl∗(Jπ=2−;T=1;Ex=1.95^{36}Cl^{\ast} (J^{\pi} = 2^{-}; T = 1; E_{x} = 1.95 MeV) →\rightarrow 36Cl(Jπ=2+;T=1;g.s.)^{36}Cl (J^{\pi} = 2^{+}; T = 1; g.s.) and 36Ar∗(Jπ=2−;T=0;Ex=4.97^{36}Ar^{\ast} (J^{\pi} = 2^{-}; T = 0; E_{x} = 4.97 MeV) →\rightarrow 36Ar∗(Jπ=2+;T=0;Ex=1.97^{36}Ar^{\ast} (J^{\pi} = 2^{+}; T = 0; E_{x} = 1.97 MeV) are investigated theoretically. We use the recently proposed Warburton-Becker-Brown shell-model interaction. For the weak forces we discuss comparatively different weak interaction models based on different assumptions for evaluating the weak meson-hadron coupling constants. The results determine a range of PγP_{\gamma} values from which we find the most probable values: PγP_{\gamma} = 1.1⋅10−41.1 \cdot 10^{-4} for 36Cl^{36}Cl and PγP_{\gamma} = 3.5⋅10−43.5 \cdot 10^{-4} for 36Ar^{36}Ar.Comment: RevTeX, 17 pages; to appear in Phys. Rev.

    On modulational instability and energy localization in anharmonic lattices at finite energy density

    Full text link
    The localization of vibrational energy, induced by the modulational instability of the Brillouin-zone-boundary mode in a chain of classical anharmonic oscillators with finite initial energy density, is studied within a continuum theory. We describe the initial localization stage as a gas of envelope solitons and explain their merging, eventually leading to a single localized object containing a macroscopic fraction of the total energy of the lattice. The initial-energy-density dependences of all characteristic time scales of the soliton formation and merging are described analytically. Spatial power spectra are computed and used for the quantitative explanation of the numerical results.Comment: 12 pages, 7 figure

    Extension of the sum rule for the transition rates between multiplets to the multiphoton case

    Full text link
    The sum rule for the transition rates between the components of two multiplets, known for the one-photon transitions, is extended to the multiphoton transitions in hydrogen and hydrogen-like ions. As an example the transitions 3p-2p, 4p-3p and 4d-3d are considered. The numerical results are compared with previous calculations.Comment: 10 pages, 4 table

    Long Range Magnetic Order and the Darwin Lagrangian

    Full text link
    We simulate a finite system of NN confined electrons with inclusion of the Darwin magnetic interaction in two- and three-dimensions. The lowest energy states are located using the steepest descent quenching adapted for velocity dependent potentials. Below a critical density the ground state is a static Wigner lattice. For supercritical density the ground state has a non-zero kinetic energy. The critical density decreases with NN for exponential confinement but not for harmonic confinement. The lowest energy state also depends on the confinement and dimension: an antiferromagnetic cluster forms for harmonic confinement in two dimensions.Comment: 5 figure

    Mutation of Ser172 in Yeast β Tubulin Induces Defects in Microtubule Dynamics and Cell Division

    Get PDF
    Ser172 of β tubulin is an important residue that is mutated in a human brain disease and phosphorylated by the cyclin-dependent kinase Cdk1 in mammalian cells. To examine the role of this residue, we used the yeast S. cerevisiae as a model and produced two different mutations (S172A and S172E) of the conserved Ser172 in the yeast β tubulin Tub2p. The two mutants showed impaired cell growth on benomyl-containing medium and at cold temperatures, altered microtubule (MT) dynamics, and altered nucleus positioning and segregation. When cytoplasmic MT effectors Dyn1p or Kar9p were deleted in S172A and S172E mutants, cells were viable but presented increased ploidy. Furthermore, the two β tubulin mutations exhibited synthetic lethal interactions with Bik1p, Bim1p or Kar3p, which are effectors of cytoplasmic and spindle MTs. In the absence of Mad2p-dependent spindle checkpoint, both mutations are deleterious. These findings show the importance of Ser172 for the correct function of both cytoplasmic and spindle MTs and for normal cell division

    Energy Relaxation in Nonlinear One-Dimensional Lattices

    Get PDF
    We study energy relaxation in thermalized one-dimensional nonlinear arrays of the Fermi-Pasta-Ulam type. The ends of the thermalized systems are placed in contact with a zero-temperature reservoir via damping forces. Harmonic arrays relax by sequential phonon decay into the cold reservoir, the lower frequency modes relaxing first. The relaxation pathway for purely anharmonic arrays involves the degradation of higher-energy nonlinear modes into lower energy ones. The lowest energy modes are absorbed by the cold reservoir, but a small amount of energy is persistently left behind in the array in the form of almost stationary low-frequency localized modes. Arrays with interactions that contain both a harmonic and an anharmonic contribution exhibit behavior that involves the interplay of phonon modes and breather modes. At long times relaxation is extremely slow due to the spontaneous appearance and persistence of energetic high-frequency stationary breathers. Breather behavior is further ascertained by explicitly injecting a localized excitation into the thermalized array and observing the relaxation behavior

    Parity nonconserving cold neutron-parahydrogen interactions

    Full text link
    Three pion dominated observables of the parity nonconserving interactions between the cold neutrons and parahydrogen are calculated. The transversely polarized neutron spin rotation, unpolarized neutron longitudinal polarization, and photon-asymmetry of the radiative polarized neutron capture are considered. For the numerical evaluation of the observables, the strong interactions are taken into account by the Reid93 potential and the parity nonconserving interactions by the DDH model along with the two-pion exchange.Comment: 17 pages, 2 figure

    The Magnificent Seven: Magnetic fields and surface temperature distributions

    Get PDF
    Presently seven nearby radio-quiet isolated neutron stars discovered in ROSAT data and characterized by thermal X-ray spectra are known. They exhibit very similar properties and despite intensive searches their number remained constant since 2001 which led to their name ``The Magnificent Seven''. Five of the stars exhibit pulsations in their X-ray flux with periods in the range of 3.4 s to 11.4 s. XMM-Newton observations revealed broad absorption lines in the X-ray spectra which are interpreted as cyclotron resonance absorption lines by protons or heavy ions and / or atomic transitions shifted to X-ray energies by strong magnetic fields of the order of 10^13 G. New XMM-Newton observations indicate more complex X-ray spectra with multiple absorption lines. Pulse-phase spectroscopy of the best studied pulsars RX J0720.4-3125 and RBS 1223 reveals variations in derived emission temperature and absorption line depth with pulse phase. Moreover, RX J0720.4-3125 shows long-term spectral changes which are interpreted as due to free precession of the neutron star. Modeling of the pulse profiles of RX J0720.4-3125 and RBS 1223 provides information about the surface temperature distribution of the neutron stars indicating hot polar caps which have different temperatures, different sizes and are probably not located in antipodal positions.Comment: 10 pages, 8 figures, to appear in Astrophysics and Space Science, in the proceedings of "Isolated Neutron Stars: from the Interior to the Surface", edited by D. Page, R. Turolla and S. Zan

    Parity Violation in Proton-Proton Scattering at 221 MeV

    Full text link
    TRIUMF experiment 497 has measured the parity violating longitudinal analyzing power, A_z, in pp elastic scattering at 221.3 MeV incident proton energy. This paper includes details of the corrections, some of magnitude comparable to A_z itself, required to arrive at the final result. The largest correction was for the effects of first moments of transverse polarization. The addition of the result, A_z=(0.84 \pm 0.29 (stat.) \pm 0.17 (syst.)) \times 10^{-7}, to the pp parity violation experimental data base greatly improves the experimental constraints on the weak meson-nucleon coupling constants h^{pp}_\rho and h^{pp}_\omega, and has implications for the interpretation of electron parity violation experiments.Comment: 17 pages RevTeX, 14 PostScript figures. Revised version with additions suggested by Phys. Rev.
    • …
    corecore