407 research outputs found

    Influence of opioids on immune function in patients with cancer pain: from bench to bedside

    Get PDF
    In patients with cancer, opioids are principally used for the management of acute surgical and chronic cancer-related pain. However, opioids have many non-analgesic effects, including direct and indirect effects on cancer cells and on anti-tumour immunity (NK cells, macrophages and T-cells). Direct effects on immune cells are manifested via opioid and non-opioid toll-like receptors, whereas indirect effects are manifested via the sympathetic nervous system and hypothalamic–pituitary–adrenal axis. Opioids can also decrease/alter immune cell infiltration into the tumour micro-environment. Animal models have shown that this is not a class effect, in that morphine and fentanyl suppress NK cell cytotoxicity; buprenorphine does not affect NK cell cytotoxicity, whereas tramadol increases NK cell cytotoxicity, reducing metastasis. In healthy individuals, morphine suppresses and fentanyl enhances NK cell cytotoxicity. In patients undergoing surgery, fentanyl decreased and tramadol increased NK cell cytotoxicity; clinical outcomes were not determined. Meta-analyses of opioid-sparing surgical studies report an association between improved recurrence-free and/or overall survival with regional/neuraxial anaesthesia compared with systemic opioids. In patients receiving opioids for non-surgical cancer-related pain, morphine has variable effects on immunity; clinical outcomes were not assessed. Although there is a potential association between systemic opioid administration and shorter survival in cancer patients with a prognosis of months to years, studies have not been designed to primarily assess survival, as a consequence of which causality cannot be apportioned. Pain is immunosuppressive, so analgesia is important. Opioids for cancer-related pain will continue to be recommended until definitive data on the effects of opioids on clinical outcomes in specific patient groups becomes available

    Dense Matter in Compact Stars: Theoretical Developments and Observational Constraints

    Get PDF
    We review theoretical developments in studies of dense matter and its phase structure of relevance to compact stars. Observational data on compact stars, which can constrain the properties of dense matter, are presented critically and interpreted.Comment: Annu. Rev. Nucl. & Part. Sci. in press. 51 pages, 17 figure

    Biogenesis of the inner membrane complex is dependent on vesicular transport by the alveolate specific GTPase Rab11B

    Get PDF
    Apicomplexan parasites belong to a recently recognised group of protozoa referred to as Alveolata. These protists contain membranous sacs (alveoli) beneath the plasma membrane, termed the Inner Membrane Complex (IMC) in the case of Apicomplexa. During parasite replication the IMC is formed de novo within the mother cell in a process described as internal budding. We hypothesized that an alveolate specific factor is involved in the specific transport of vesicles from the Golgi to the IMC and identified the small GTPase Rab11B as an alveolate specific Rab-GTPase that localises to the growing end of the IMC during replication of Toxoplasma gondii. Conditional interference with Rab11B function leads to a profound defect in IMC biogenesis, indicating that Rab11B is required for the transport of Golgi derived vesicles to the nascent IMC of the daughter cell. Curiously, a block in IMC biogenesis did not affect formation of sub-pellicular microtubules, indicating that IMC biogenesis and formation of sub-pellicular microtubules is not mechanistically linked. We propose a model where Rab11B specifically transports vesicles derived from the Golgi to the immature IMC of the growing daughter parasites

    The SPEDE spectrometer

    Get PDF
    The electron spectrometer, SPEDE, has been developed and will be employed in conjunction with the Miniball spectrometer at the HIE-ISOLDE facility, CERN. SPEDE allows for direct measurement of internal conversion electrons emitted in-flight, without employing magnetic fields to transport or momentum filter the electrons. Together with the Miniball spectrometer, it enables simultaneous observation of {\gamma} rays and conversion electrons in Coulomb-excitation experiments using radioactive ion beams

    TALEN-mediated editing of the mouse Y chromosome

    Get PDF
    The functional study of Y chromosome genes has been hindered by a lack of mouse models with specific Y chromosome mutations. We used transcription activator-like effector nuclease (TALEN)-mediated gene editing in mouse embryonic stem cells (mESCs) to produce mice with targeted gene disruptions and insertions in two Y-linked genes—Sry and Uty. TALEN-mediated gene editing is a useful tool for dissecting the biology of the Y chromosome.National Institutes of Health (U.S.) (US NIH grant R01-HG000257)National Institutes of Health (U.S.) (US NIH grant R01-CA084198)National Institutes of Health (U.S.) (US NIH grant R37-HD045022)Croucher Foundation (Scholarship)Howard Hughes Medical Institute (Investigator

    Kinetic‐Scale Turbulence in the Venusian Magnetosheath

    Get PDF
    While not specifically designed as a planetary mission, NASA's Parker Solar Probe (PSP) mission uses a series of Venus gravity assists (VGAs) in order to reduce its perihelion distance. These orbital maneuvers provide the opportunity for direct measurements of the Venus plasma environment at high cadence. We present first observations of kinetic scale turbulence in the Venus magnetosheath from the first two VGAs. In VGA1, PSP observed a quasi‐parallel shock, β ∼ 1 magnetosheath plasma, and a kinetic range scaling of k−2.9. VGA2 was characterized by a quasi‐perpendicular shock with β ∼ 10, and a steep k−3.4 spectral scaling. Temperature anisotropy measurements from VGA2 suggest an active mirror mode instability. Significant coherent waves are present in both encounters at sub‐ion and electron scales. Using conditioning techniques to exclude these electromagnetic wave events suggests the presence of developed sub‐ion kinetic turbulence in both magnetosheath encounters
    corecore