243 research outputs found

    Structure of pair winds from compact objects with application to emission from bare strange stars

    Get PDF
    We present the results of numerical simulations of stationary, spherically outflowing, electron-positron pair winds, with total luminosities in the range 10^{34}- 10^{42} ergs/s. In the concrete example described here, the wind injection source is a hot, bare, strange star, predicted to be a powerful source of electron-positron pairs created by the Coulomb barrier at the quark surface. We find that photons dominate in the emerging emission, and the emerging photon spectrum is rather hard and differs substantially from the thermal spectrum expected from a neutron star with the same luminosity. This might help distinguish the putative bare strange stars from neutron stars.Comment: 4 pages, 6 figures, 1 table, added references, to appear in the proceedings of the conference "Isolated Neutron Stars: from the Surface to the Interior", London, UK, 24-28 April 200

    Viability of primordial black holes as short period gamma-ray bursts

    Full text link
    It has been proposed that the short period gamma-ray bursts, which occur at a rate of 10yr1\sim 10 {\rm yr^{-1}}, may be evaporating primordial black holes (PBHs). Calculations of the present PBH evaporation rate have traditionally assumed that the PBH mass function varies as MBH5/2M_{{\rm BH}}^{-5/2}. This mass function only arises if the density perturbations from which the PBHs form have a scale invariant power spectrum. It is now known that for a scale invariant power spectrum, normalised to COBE on large scales, the PBH density is completely negligible, so that this mass function is cosmologically irrelevant. For non-scale-invariant power spectra, if all PBHs which form at given epoch have a fixed mass then the PBH mass function is sharply peaked around that mass, whilst if the PBH mass depends on the size of the density perturbation from which it forms, as is expected when critical phenomena are taken into account, then the PBH mass function will be far broader than MBH5/2 M_{{\rm BH}}^{-5/2}. In this paper we calculate the present day PBH evaporation rate, using constraints from the diffuse gamma-ray background, for both of these mass functions. If the PBH mass function has significant finite width, as recent numerical simulations suggest, then it is not possible to produce a present day PBH evaporation rate comparable with the observed short period gamma-ray burst rate. This could also have implications for other attempts to detect evaporating PBHs.Comment: 5 pages, 2 figures, version to appear in Phys. Rev. D with additional reference

    Greybody Factors of Charged Dilaton Black Holes in 2 + 1 Dimensions

    Full text link
    We have studied scalar perturbations of charged dilaton black holes in 2+1 dimensions. The black hole considered here is a solution to the low-energy string theory in 2+1 dimensions. The exact decay rates and the grey body factors for the massless minimally coupled scalar is computed for both the charged and the uncharged dilaton black holes. The charged and the uncharged black hole show similar behavior for grey body factors, reflection coefficients and decay rates.Comment: The equation for the potential and figure:1 are changed. The changes does not effect the result

    Observational constraints on the nature of very short gamma-ray bursts

    Full text link
    We discuss a very peculiar subgroup of gamma-ray bursts among the BATSE sources. These bursts are very short (T90T_{90} \le 0.1 s), hard, and came predominantly from a restricted direction of the sky (close to the Galactic anti-center). We analyze their arrival times and possible correlations, as well as the profiles of individual bursts. We find no peculiarities in the arrival times of Very Short Bursts (VSBs) despite their highly non-uniform spatial distribution. There is no dependence in the burst shapes on location. Bursts coming both from the burst-enhancement Galactic Anticenter region and from all other directions show considerable dispersion in their rise and fall times. Significant fraction of VSBs have multiple peaks despite their extremely short duration. Burst time properties are most likely to be consistent with two origin mechanisms: either with binary NS-NS mergers with low total masses passing through a phase of hypermassive neutron star, or with evaporation of the primordial black holes in the scenario of no photosphere formation.Comment: 25 pages, 14 figures; accepted to New Astronom

    Neutrino Emission from Goldstone Modes in Dense Quark Matter

    Get PDF
    We calculate neutrino emissivities from the decay and scattering of Goldstone bosons in the color-flavor-locked (CFL) phase of quarks at high baryon density. Interactions in the CFL phase are described by an effective low-energy theory. For temperatures in the tens of keV range, relevant to the long-term cooling of neutron stars, the emissivities involving Goldstone bosons dominate over those involving quarks, because gaps in the CFL phase are 100\sim 100 MeV while the masses of Goldstone modes are on the order of 10 MeV. For the same reason, the specific heat of the CFL phase is also dominated by the Goldstone modes. Notwithstanding this, both the emissivity and the specific heat from the massive modes remain rather small, because of their extremely small number densities. The values of the emissivity and the specific heat imply that the timescale for the cooling of the CFL core in isolation is 1026\sim 10^{26} y, which makes the CFL phase invisible as the exterior layers of normal matter surrounding the core will continue to cool through significantly more rapid processes. If the CFL phase appears during the evolution of a proto-neutron star, neutrino interactions with Goldstone bosons are expected to be significantly more important since temperatures are high enough (2040\sim 20-40 MeV) to admit large number densities of Goldstone modes.Comment: 29 pages, no figures. slightly modified text, one new eqn. and new refs. adde

    Parity nonconserving cold neutron-parahydrogen interactions

    Full text link
    Three pion dominated observables of the parity nonconserving interactions between the cold neutrons and parahydrogen are calculated. The transversely polarized neutron spin rotation, unpolarized neutron longitudinal polarization, and photon-asymmetry of the radiative polarized neutron capture are considered. For the numerical evaluation of the observables, the strong interactions are taken into account by the Reid93 potential and the parity nonconserving interactions by the DDH model along with the two-pion exchange.Comment: 17 pages, 2 figure

    Exotic Meson Production in the f1(1285)πf_{1}(1285)\pi^{-} System observed in the Reaction πpηπ+ππp\pi^{-} p \to \eta\pi^{+}\pi^{-}\pi^{-} p at 18 GeV/c

    Get PDF
    This letter reports results from the partial wave analysis of the πππ+η\pi^{-}\pi^{-}\pi^{+}\eta final state in πp\pi^{-}p collisions at 18GeV/c. Strong evidence is observed for production of two mesons with exotic quantum numbers of spin, parity and charge conjugation, JPC=1+J^{PC} = 1^{-+} in the decay channel f1(1285)πf_{1}(1285)\pi^{-}. The mass M=1709±24±41M = 1709 \pm 24 \pm 41 MeV/c^2 and width Γ=403±80±115\Gamma = 403 \pm 80 \pm 115 MeV/c^2 of the first state are consistent with the parameters of the previously observed π1(1600)\pi_{1}(1600). The second resonance with mass M=2001±30±92M = 2001 \pm 30 \pm 92 MeV/c^2 and width Γ=333±52±49\Gamma = 333 \pm 52 \pm 49 MeV/c^2 agrees very well with predictions from theoretical models. In addition, the presence of π2(1900)\pi_{2}(1900) is confirmed with mass M=2003±88±148M = 2003 \pm 88 \pm 148 MeV/c^2 and width Γ=306±132±121\Gamma = 306 \pm 132 \pm 121 MeV/c^2 and a new state, a1(2096)a_{1}(2096), is observed with mass M=2096±17±121M = 2096 \pm 17 \pm 121 MeV/c^2 and width Γ=451±41±81\Gamma = 451 \pm 41 \pm 81 MeV/c^2. The decay properties of these last two states are consistent with flux tube model predictions for hybrid mesons with non-exotic quantum numbers

    The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Get PDF
    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics

    Tumor mutational burden is a determinant of immune-mediated survival in breast cancer

    Get PDF
    Mounting evidence supports a role for the immune system in breast cancer outcomes. The ability to distinguish highly immunogenic tumors susceptible to anti-tumor immunity from weakly immunogenic or inherently immune-resistant tumors would guide development of therapeutic strategies in breast cancer. Genomic, transcriptomic and clinical data from The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) breast cancer cohorts were used to examine statistical associations between tumor mutational burden (TMB) and the survival of patients whose tumors were assigned to previously-described prognostic immune subclasses reflecting favorable, weak or poor immune-infiltrate dispositions (FID, WID or PID, respectively). Tumor immune subclasses were associated with survival in patients with high TMB (TMB-Hi, P < 0.001) but not in those with low TMB (TMB-Lo, P = 0.44). This statistical relationship was confirmed in the METABRIC cohort (TMB-Hi, P = 0.047; TMB-Lo, P = 0.39), and also found to hold true in the more-indolent Luminal A tumor subtype (TMB-Hi, P = 0.011; TMB-Lo, P = 0.91). In TMB-Hi tumors, the FID subclass was associated with prolonged survival independent of tumor stage, molecular subtype, age and treatment. Copy number analysis revealed the reproducible, preferential amplification of chromosome 1q immune-regulatory genes in the PID immune subclass. These findings demonstrate a previously unappreciated role for TMB as a determinant of immune-mediated survival of breast cancer patients and identify candidate immune-regulatory mechanisms associated with immunologically cold tumors. Immune subtyping of breast cancers may offer opportunities for therapeutic stratification
    corecore