45 research outputs found

    Systematic Review: The Effect of Hearing Aids on Balance and Falls

    Full text link
    Background: The population of individuals 65 years old is increasing and falls are one of the most prevalent causes of disabilities among this population. Recent studies have found association between neural hearing losses and increased risk of falls, suggesting that hearing is an important input that assist visual, proprioceptive and vestibular inputs in maintaining balance. Hearing aids are known to be beneficial to improve access to sound; however, it is very limited the research regarding the effects of amplification on balance and risk of falls. Objectives: This systematic review intends to gather and analyze all the research available regarding the effect of using hearing aids on improving self-reported or tested balance outcomes as well as on decreasing self-reported or objectively measures of falls in adults with hearing loss. Methods: EBSCOhost/Medline Complete, ProQuest, PubMEd, Cochrane Library, ScienceDirect, BioMed Central and Google Scholar, were searched for articles between 2012 to 2020 using specific key terms. Inclusion parameters were: 1) studies from 2012 to 2020, 2) peer-reviewed articles, 3) adults (\u3e 18 years old), 4) articles in English or Spanish, 4) randomized controlled trials or retrospective studies that compared using hearing aids versus not using hearing aids and 5) studies that included vestibular pathologies. The following exclusion criteria was established: 1) studies with a pediatric population (\u3c 18 years old), 2) studies with individuals who have had vestibular rehabilitation, 3) studies of participants with dual sensory impairment (vision and hearing loss) and 4) studies that included participants with acute medical conditions (e.g., strokes). Results: A total of ten studies that analyzed the effect of hearing aids on balance outcomes and a total of four studies that analyzed the effect of hearing aid on falls outcomes measurements were included in this systematic review. For the first objective, six out of the ten studies suggest significant benefit of using hearing aids on balance outcomes. For the second objective, all four studies showed positive association of wearing hearing aids on fall related outcomes. Conclusion: Finding in this systematic review suggest that there is a benefit of using hearing aids on both balance and fall related outcomes for older adults with hearing loss. Our analysis suggests that there is a possible improvement in balance and decrease in frequency of falls, particularly, for adults with hearing loss and concomitant vestibular loss. It seems that these individuals benefit more from auditory cues to maintain balance

    Control of Erigeron bonariensis with Thymbra capitata, Mentha piperita, Eucalyptus camaldulensis, and Santolina chamaecyparissus Essential Oils

    Get PDF
    [EN] In the search of sustainable and environmentally friendly methods for weed control, there is increasing interest in essential oils (EOs) as an approach to reduce synthetic herbicide use. The phytotoxicity of Thymbra capitata, Menthapiperita, Eucalyptus camaldulensis, and Santolina chamaecyparissus EOs against the noxious weed Erigeron bonariensis were evaluated in pre- and post-emergence assays in greenhouse conditions. The EOs were applied at 2, 4, and 8 mu L/mL, with Fitoil used as emulsifier. In post-emergence, two ways of application were tested, irrigation and spraying. Several germination parameters (germination %, mean germination time, and synchrony of the germination process) were evaluated in pre-emergence tests, and the phytotoxicity level was assessed in post-emergence. In pre-emergence, all EOs significantly reduced seed germination as compared to the controls, ranking: T. capitata > E. camaldulensis > S. chamaecyparissus > M. piperita. The effectiveness of all EOs varied with the tested dose, always following the rank 2 mu L < 4 mu L < 8 mu L, with T. capitata EO showing full effectiveness even at the lowest dose. In post-emergence, T. capitata was the most effective EO, inducing a rather complete inhibition of plantlet growth at the highest two doses. These EOs demonstrated to have good potential for the formulation of natural herbicides.Verdeguer Sancho, MM.; Castañeda, LG.; Torres-Pagan, N.; Llorens Molina, JA.; Carrubba, A. (2020). Control of Erigeron bonariensis with Thymbra capitata, Mentha piperita, Eucalyptus camaldulensis, and Santolina chamaecyparissus Essential Oils. Molecules. 25(3):1-22. https://doi.org/10.3390/molecules25030562S122253Hüter, O. F. (2010). Use of natural products in the crop protection industry. Phytochemistry Reviews, 10(2), 185-194. doi:10.1007/s11101-010-9168-ySavary, S., Ficke, A., Aubertot, J.-N., & Hollier, C. (2012). Crop losses due to diseases and their implications for global food production losses and food security. Food Security, 4(4), 519-537. doi:10.1007/s12571-012-0200-5OERKE, E.-C. (2005). Crop losses to pests. The Journal of Agricultural Science, 144(1), 31-43. doi:10.1017/s0021859605005708Troyer, J. R. (2001). In the beginning: the multiple discovery of the first hormone herbicides. Weed Science, 49(2), 290-297. doi:10.1614/0043-1745(2001)049[0290:itbtmd]2.0.co;2Catalá, R., & Salinas, J. (2018). Tailoring crop nutrition to fight weeds. Proceedings of the National Academy of Sciences, 115(29), 7456-7458. doi:10.1073/pnas.1809311115Abbas, T., Zahir, Z. A., Naveed, M., & Kremer, R. J. (2018). Limitations of Existing Weed Control Practices Necessitate Development of Alternative Techniques Based on Biological Approaches. Advances in Agronomy, 239-280. doi:10.1016/bs.agron.2017.10.005http://www.fao.org/3/a-i3604e.pdfVilla, F., Cappitelli, F., Cortesi, P., & Kunova, A. (2017). Fungal Biofilms: Targets for the Development of Novel Strategies in Plant Disease Management. Frontiers in Microbiology, 8. doi:10.3389/fmicb.2017.00654Benvenuti, S., Cioni, P. L., Flamini, G., & Pardossi, A. (2017). Weeds for weed control: Asteraceae essential oils as natural herbicides. Weed Research, 57(5), 342-353. doi:10.1111/wre.12266Tworkoski, T. (2002). Herbicide effects of essential oils. Weed Science, 50(4), 425-431. doi:10.1614/0043-1745(2002)050[0425:heoeo]2.0.co;2Verdeguer, M., Blázquez, M. A., & Boira, H. (2009). Phytotoxic effects of Lantana camara, Eucalyptus camaldulensis and Eriocephalus africanus essential oils in weeds of Mediterranean summer crops. Biochemical Systematics and Ecology, 37(4), 362-369. doi:10.1016/j.bse.2009.06.003SINGH, H. P., BATISH, D. R., SETIA, N., & KOHLI, R. K. (2005). Herbicidal activity of volatile oils from Eucalyptus citriodora against Parthenium hysterophorus. Annals of Applied Biology, 146(1), 89-94. doi:10.1111/j.1744-7348.2005.04018.xAngelini, L. G., Carpanese, G., Cioni, P. L., Morelli, I., Macchia, M., & Flamini, G. (2003). Essential Oils from Mediterranean Lamiaceae as Weed Germination Inhibitors. Journal of Agricultural and Food Chemistry, 51(21), 6158-6164. doi:10.1021/jf0210728Frabboni, Tarantino, Petruzzi, & Disciglio. (2019). Bio-Herbicidal Effects of Oregano and Rosemary Essential Oils on Chamomile (Matricaria chamomilla L.) Crop in Organic Farming System. Agronomy, 9(9), 475. doi:10.3390/agronomy9090475Bajwa, A. A., Sadia, S., Ali, H. H., Jabran, K., Peerzada, A. M., & Chauhan, B. S. (2016). Biology and management of two important Conyza weeds: a global review. Environmental Science and Pollution Research, 23(24), 24694-24710. doi:10.1007/s11356-016-7794-7Trezzi, M. M., Balbinot Jr., A. A., Benin, G., Debastiani, F., Patel, F., & Miotto Jr., E. (2013). Competitive ability of soybean cultivars with horseweed (Conyza bonariensis). Planta Daninha, 31(3), 543-550. doi:10.1590/s0100-83582013000300006Ferreira, E. A., Galon, L., Aspiazú, I., Silva, A. A., Concenço, G., Silva, A. F., … Vargas, L. (2008). Glyphosate translocation in hairy fleabane (Conyza bonariensis) biotypes. Planta Daninha, 26(3), 637-643. doi:10.1590/s0100-83582008000300020WU, H., WALKER, S., ROLLIN, M. J., TAN, D. K. Y., ROBINSON, G., & WERTH, J. (2007). Germination, persistence, and emergence of flaxleaf fleabane (Conyza bonariensis [L.] Cronquist). Weed Biology and Management, 7(3), 192-199. doi:10.1111/j.1445-6664.2007.00256.xWu, H., Walker, S., Robinson, G., & Coombes, N. (2010). Control of Flaxleaf Fleabane (Conyza bonariensis) in Wheat and Sorghum. Weed Technology, 24(2), 102-107. doi:10.1614/wt-09-043.1Moreira, M. S., Nicolai, M., Carvalho, S. J. P., & Christoffoleti, P. J. (2007). Resistência de Conyza canadensis e C. bonariensis ao herbicida glyphosate. Planta Daninha, 25(1), 157-164. doi:10.1590/s0100-83582007000100017The International Survey of Herbicide Resistant Weedswww.weedscience.org.Mahdavikia, F., & Saharkhiz, M. J. (2015). Phytotoxic activity of essential oil and water extract of peppermint (Mentha×piperita L. CV. Mitcham). Journal of Applied Research on Medicinal and Aromatic Plants, 2(4), 146-153. doi:10.1016/j.jarmap.2015.09.003Miceli, A., Negro, C., & Tommasi, L. (2006). Essential oil variability in Thymbra capitata (L.) Cav. growing wild in Southern Apulia (Italy). Biochemical Systematics and Ecology, 34(6), 528-535. doi:10.1016/j.bse.2005.12.010Fleisher, Z., & Fleisher, A. (2002). Volatiles ofCoridothymus capitatusChemotypes Growing in Israel: Aromatic Plants of the Holy Land and the Sinai. Part XV. Journal of Essential Oil Research, 14(2), 105-106. doi:10.1080/10412905.2002.9699785Hedhili, L., Romdhane, M., Abderrabba, A., Planche, H., & Cherif, I. (2001). Variability in essential oil composition of TunisianThymus capitatus (L.) Hoffmanns. et Link. Flavour and Fragrance Journal, 17(1), 26-28. doi:10.1002/ffj.1029Saoud, I., Hamrouni, L., Gargouri, S., Amri, I., Hanana, M., Fezzani, T., … Jamoussi, B. (2013). Chemical composition, weed killer and antifungal activities of Tunisian thyme (Thymus capitatusHoff. et Link.) essential oils. Acta Alimentaria, 42(3), 417-427. doi:10.1556/aalim.42.2013.3.15Ibáñez, M. D., & Blázquez, M. A. (2017). Herbicidal value of essential oils from oregano-like flavour species. Food and Agricultural Immunology, 28(6), 1168-1180. doi:10.1080/09540105.2017.1332010Pinheiro, P. F., Costa, A. V., Alves, T. de A., Galter, I. N., Pinheiro, C. A., Pereira, A. F., … Fontes, M. M. P. (2015). Phytotoxicity and Cytotoxicity of Essential Oil from Leaves of Plectranthus amboinicus, Carvacrol, and Thymol in Plant Bioassays. Journal of Agricultural and Food Chemistry, 63(41), 8981-8990. doi:10.1021/acs.jafc.5b03049Vasilakoglou, I., Dhima, K., Paschalidis, K., & Ritzoulis, C. (2013). Herbicidal potential onLolium rigidumof nineteen major essential oil components and their synergy. Journal of Essential Oil Research, 25(1), 1-10. doi:10.1080/10412905.2012.751054Vokou, D., Douvli, P., Blionis, G. J., & Halley, J. M. (2003). Journal of Chemical Ecology, 29(10), 2281-2301. doi:10.1023/a:1026274430898Martino, L. D., Mancini, E., Almeida, L. F. R. de, & Feo, V. D. (2010). The Antigerminative Activity of Twenty-Seven Monoterpenes. Molecules, 15(9), 6630-6637. doi:10.3390/molecules15096630Chaimovitsh, D., Shachter, A., Abu-Abied, M., Rubin, B., Sadot, E., & Dudai, N. (2016). Herbicidal Activity of Monoterpenes Is Associated with Disruption of Microtubule Functionality and Membrane Integrity. Weed Science, 65(1), 19-30. doi:10.1614/ws-d-16-00044.1Soković, M. D., Glamočlija, J., Marin, P. D., Brkić, D. D., Vukojević, J., Jovanović, D., … Kataranovski, D. (2006). Antifungal Activity of the Essential Oil ofMentha. xpiperita. Pharmaceutical Biology, 44(7), 511-515. doi:10.1080/13880200600878700Desam, N. R., Al-Rajab, A. J., Sharma, M., Mylabathula, M. M., Gowkanapalli, R. R., & Albratty, M. (2019). Chemical constituents, in vitro antibacterial and antifungal activity of Mentha×Piperita L. (peppermint) essential oils. Journal of King Saud University - Science, 31(4), 528-533. doi:10.1016/j.jksus.2017.07.013Synowiec, A., & Drozdek, E. (2016). Physicochemical and herbicidal properties of emulsions of essential oils against Avena fatua L. and Chenopodium album L. Journal of Plant Diseases and Protection, 123(2), 65-74. doi:10.1007/s41348-016-0012-5Maffei, M., Camusso, W., & Sacco, S. (2001). Effect of Mentha × piperita essential oil and monoterpenes on cucumber root membrane potential. Phytochemistry, 58(5), 703-707. doi:10.1016/s0031-9422(01)00313-2SKRZYPEK, E., REPKA, P., STACHURSKA-SWAKON, A., BARABASZ-KRASNY, B., & MOZDZEN, K. (2015). Allelopathic Effect of Aqueous Extracts from the Leaves of Peppermint (Mentha piperita L.) on Selected Physiological Processes of Common Sunflower (Helianthus annuus L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 43(2), 335-342. doi:10.15835/nbha43210034Campiglia, E., Mancinelli, R., Cavalieri, A., & Caporali, F. (2007). Use of Essential Oils of Cinnamon, Lavender and Peppermint for Weed Control. Italian Journal of Agronomy, 2(2), 171. doi:10.4081/ija.2007.171Pappas, R. S., & Sheppard-Hanger, S. (2000). Essential Oil ofEucalyptus camaldulensisDehn. from South Florida: A High Cryptone/Low Cineole Eucalyptus. Journal of Essential Oil Research, 12(3), 383-384. doi:10.1080/10412905.2000.9699541Chalchat, J.-C., Kundakovic, T., & Gomnovic, M. S. (2001). Essential Oil from the Leaves ofEucalyptus camaldulensisDehn., Myrtaceae from Jerusalem. Journal of Essential Oil Research, 13(2), 105-107. doi:10.1080/10412905.2001.9699627Tsiri, D., Kretsi, O., Chinou, I. B., & Spyropoulos, C. G. (2003). Composition of fruit volatiles and annual changes in the volatiles of leaves ofEucalyptus camaldulensis Dehn. growing in Greece. Flavour and Fragrance Journal, 18(3), 244-247. doi:10.1002/ffj.1220Üstüner, T., Kordali, Ş., Usanmaz Bozhüyük, A., & Kesdek, M. (2018). Investigation of Pesticidal Activities of Essential Oil of Eucalyptus camaldulensis Dehnh. Records of Natural Products, 12(6), 557-568. doi:10.25135/rnp.64.18.02.088Fouad, R., Bousta, D., Lalami, A. E. O., Chahdi, F. O., Amri, I., Jamoussi, B., & Greche, H. (2015). Chemical Composition and Herbicidal Effects of Essential Oils ofCymbopogon citratus(DC) Stapf,Eucalyptus cladocalyx, Origanum vulgareL andArtemisia absinthiumL. cultivated in Morocco. Journal of Essential Oil Bearing Plants, 18(1), 112-123. doi:10.1080/0972060x.2014.901631Vernin, G. (1991). Volatile Constituents of the Essential Oil ofSantolina chamaecyparissusL. Journal of Essential Oil Research, 3(1), 49-53. doi:10.1080/10412905.1991.9697907Pérez-Alonso, M. J., & Velasco-Negueruela, A. (1992). Essential oil components ofSantolina chamaecyparissus L. Flavour and Fragrance Journal, 7(1), 37-41. doi:10.1002/ffj.2730070109Derbesy, M., Touche, J., & Zola, A. (1989). The Essential Oil ofSantolina chamaecyparissusL. Journal of Essential Oil Research, 1(6), 269-275. doi:10.1080/10412905.1989.9697797Grosso, C., Coelho, J. A., Urieta, J. S., Palavra, A. M. F., & Barroso, J. G. (2010). Herbicidal Activity of Volatiles from Coriander, Winter Savory, Cotton Lavender, and Thyme Isolated by Hydrodistillation and Supercritical Fluid Extraction. Journal of Agricultural and Food Chemistry, 58(20), 11007-11013. doi:10.1021/jf102378dGarg, S. N., Gupta, D., Mehta, V. K., & Kumar, S. (2001). Volatile Constituents of the Essential Oil ofSantolina chamaecyparissusLinn, from the Southern Hills of India. Journal of Essential Oil Research, 13(4), 234-235. doi:10.1080/10412905.2001.9699679Ortiz de Elguea-Culebras, G., Sánchez-Vioque, R., Berruga, M. I., Herraiz-Peñalver, D., González-Coloma, A., Andrés, M. F., & Santana-Méridas, O. (2017). Biocidal Potential and Chemical Composition of Industrial Essential Oils from Hyssopus officinalis , Lavandula × intermedia var. Super , and Santolina chamaecyparissus. Chemistry & Biodiversity, 15(1), e1700313. doi:10.1002/cbdv.201700313Ranal, M. A., & Santana, D. G. de. (2006). How and why to measure the germination process? Revista Brasileira de Botânica, 29(1), 1-11. doi:10.1590/s0100-84042006000100002Ranal, M. A., Santana, D. G. de, Ferreira, W. R., & Mendes-Rodrigues, C. (2009). Calculating germination measurements and organizing spreadsheets. Revista Brasileira de Botânica, 32(4), 849-855. doi:10.1590/s0100-8404200900040002

    Essential Oils of Three Aromatic Plant Species as Natural Herbicides for Environmentally Friendly Agriculture

    Full text link
    [EN] Natural herbicides based on essential oils (EOs) extracted from aromatic plants are gaining relevance in contemporary agriculture. Due to their allelopathic properties, they have an inhibitory effect on the germination and growth of different species, having, in general, the advantage of high specificity. For this reason, the analysis of the effects of these natural compounds on noxious weeds is continuously increasing. In the present study, three commercial EOs extracted from Mentha piperita L., Thymbra capitata (L.) Cav. and Santolina chamaecyparissus L. were tested on two invasive weeds with an increasing presence in southern Europe, Erigeron bonariensis L. and Araujia sericifera Brot. Five concentrations (0.125, 0.25, 0.50, 1 and 2 mu L mL(-1)) were tested in a randomized manner for each essential oil and five replicates with 20 seeds each for E. bonariensis and 10 replicates with 10 seeds each for A. sericifera. Two higher concentrations of 4 and 8 mu L mL(-1) of the three EOs were applied with irrigation on the plants of the two species at the vegetative growth stage. The number of replicas for each treatment and species was 7. The results obtained confirmed the significant inhibitory effects on seed germination and early seedling development, especially in E. bonariensis; of the three EOs, peppermint had the strongest effect, completely preventing germination in both species. Multivariate analysis, performed on several morphological traits scored after one month of treatment in young plants, showed a different pattern: the highest inhibition was recorded in A. sericifera and the greatest reduction in growth in the treatment with the highest dose of Santolina EO. The results obtained revealed the efficacy of these natural compounds and the specificity of their toxicity according to the species and stage of development.Bellache, M.; Torres-Pagan, N.; Verdeguer Sancho, MM.; Benfekih, LA.; Vicente, O.; Sestras, RE.; Sestras, AF.... (2022). Essential Oils of Three Aromatic Plant Species as Natural Herbicides for Environmentally Friendly Agriculture. Sustainability. 14(6):1-22. https://doi.org/10.3390/su1406359612214

    Herbicidal Activity of Thymbra capitata (L.) Cav. Essential Oil

    Get PDF
    [EN] The bioherbicidal potential ofThymbra capitata(L.) Cav. essential oil (EO) and its main compound carvacrol was investigated. In in vitro assays, the EO blocked the germination and seedling growth ofErigeron canadensisL.,Sonchus oleraceus(L.) L., andChenopodium albumL. at 0.125 mu L/mL, ofSetaria verticillata(L.) P.Beauv.,Avena fatuaL., andSolanum nigrumL. at 0.5 mu L/mL, ofAmaranthus retroflexusL. at 1 mu L/mL and ofPortulaca oleraceaL., andEchinochloa crus-galli(L.) P.Beauv. at 2 mu L/mL. Under greenhouse conditions,T. capitataEO was tested towards the emergent weeds from a soil seedbank in pre and post emergence, showing strong herbicidal potential in both assays at 4 mu L/mL. In addition,T. capitataEO, applied by spraying, was tested againstP. oleracea,A. fatuaandE. crus-galli. The species showed different sensibility to the EO, beingE. crus-gallithe most resistant. Experiments were performed againstA. fatuatestingT. capitataEO and carvacrol applied by spraying or by irrigation. It was verified that the EO was more active at the same doses in monocotyledons applied by irrigation and in dicotyledons applied by spraying. Carvacrol effects onArabidopsisroot morphology were also studied.This research was supported by the Universitat Politècnica de València [project number: SP20120543], by Generalitat Valenciana [project number GV/2014/039], and by the Spanish Ministry of Science, Innovation and Universities [project number: RTI2018¿094716¿B¿I00]. Thanks to Jovano Erris Nugroho and Muhamad Iqbal who collaborate to carry out in vivo experiment 4 during their internship in the Plant Health in Sustainable Cropping Systems Erasmus+ Programme. This research work has been developed as a result of a mobility stay funded by the Erasmus+-KA1 Erasmus Mundus Joint Master Degrees Programme of the European Commission under the PLANT HEALTH Project. Thanks to Xeda Italia S.r.l. for providing us Fitoil always when we need it. Thanks to Vicente Estornell Campos and the Library staff from Polytechnic University of Valencia that assisted us to get some helpful references.Verdeguer Sancho, MM.; Torres-Pagan, N.; Muñoz, M.; Jouini, A.; García-Plasencia, S.; Chinchilla, P.; Berbegal Martinez, M.... (2020). Herbicidal Activity of Thymbra capitata (L.) Cav. Essential Oil. Molecules. 25(12):1-31. https://doi.org/10.3390/molecules25122832S1312512Barros, L., Heleno, S. A., Carvalho, A. M., & Ferreira, I. C. F. R. (2010). Lamiaceae often used in Portuguese folk medicine as a source of powerful antioxidants: Vitamins and phenolics. LWT - Food Science and Technology, 43(3), 544-550. doi:10.1016/j.lwt.2009.09.024Goudjil, M. B., Zighmi, S., Hamada, D., Mahcene, Z., Bencheikh, S. E., & Ladjel, S. (2020). Biological activities of essential oils extracted from Thymus capitatus (Lamiaceae). South African Journal of Botany, 128, 274-282. doi:10.1016/j.sajb.2019.11.020Gagliano Candela, R., Maggi, F., Lazzara, G., Rosselli, S., & Bruno, M. (2019). The Essential Oil of Thymbra capitata and its Application as A Biocide on Stone and Derived Surfaces. Plants, 8(9), 300. doi:10.3390/plants8090300Tohidi, B., Rahimmalek, M., Arzani, A., & Sabzalian, M. R. (2020). Thymol, carvacrol, and antioxidant accumulation in Thymus species in response to different light spectra emitted by light-emitting diodes. Food Chemistry, 307, 125521. doi:10.1016/j.foodchem.2019.125521Vladimir-Knežević, S., Blažeković, B., Kindl, M., Vladić, J., Lower-Nedza, A., & Brantner, A. (2014). Acetylcholinesterase Inhibitory, Antioxidant and Phytochemical Properties of Selected Medicinal Plants of the Lamiaceae Family. Molecules, 19(1), 767-782. doi:10.3390/molecules19010767BRÄUCHLER, C. (2018). Delimitation and revision of the genus Thymbra (Lamiaceae). Phytotaxa, 369(1), 15. doi:10.11646/phytotaxa.369.1.2Paton, A. J., Springate, D., Suddee, S., Otieno, D., Grayer, R. J., Harley, M. M., … Savolainen, V. (2004). Phylogeny and evolution of basils and allies (Ocimeae, Labiatae) based on three plastid DNA regions. Molecular Phylogenetics and Evolution, 31(1), 277-299. doi:10.1016/j.ympev.2003.08.002Pastore, J. F. B., Harley, R. M., Forest, F., Paton, A., & van den Berg, C. (2011). Phylogeny of the subtribe Hyptidinae (Lamiaceae tribe Ocimeae) as inferred from nuclear and plastid DNA. TAXON, 60(5), 1317-1329. doi:10.1002/tax.605008Salmaki, Y., Zarre, S., Ryding, O., Lindqvist, C., Bräuchler, C., Heubl, G., … Bendiksby, M. (2013). Molecular phylogeny of tribe Stachydeae (Lamiaceae subfamily Lamioideae). Molecular Phylogenetics and Evolution, 69(3), 535-551. doi:10.1016/j.ympev.2013.07.024Salmaki, Y., Kattari, S., Heubl, G., & Bräuchler, C. (2016). Phylogeny of non-monophyletic Teucrium (Lamiaceae: Ajugoideae): Implications for character evolution and taxonomy. Taxon, 65(4), 805-822. doi:10.12705/654.8LI, B., & OLMSTEAD, R. G. (2017). Two new subfamilies in Lamiaceae. Phytotaxa, 313(2), 222. doi:10.11646/phytotaxa.313.2.9Bräuchler, C., Meimberg, H., & Heubl, G. (2010). Molecular phylogeny of Menthinae (Lamiaceae, Nepetoideae, Mentheae) – Taxonomy, biogeography and conflicts. Molecular Phylogenetics and Evolution, 55(2), 501-523. doi:10.1016/j.ympev.2010.01.016World Checklist of Lamiaceae. Facilitated by the Royal Botanic Gardens, Kewhttp://wcsp.science.kew.orgHarley, R. M., Atkins, S., Budantsev, A. L., Cantino, P. D., Conn, B. J., Grayer, R., … Upson, T. (2004). Labiatae. Flowering Plants · Dicotyledons, 167-275. doi:10.1007/978-3-642-18617-2_11Miceli, A., Negro, C., & Tommasi, L. (2006). Essential oil variability in Thymbra capitata (L.) Cav. growing wild in Southern Apulia (Italy). Biochemical Systematics and Ecology, 34(6), 528-535. doi:10.1016/j.bse.2005.12.010Delgado-Adámez, J., Garrido, M., Bote, M. E., Fuentes-Pérez, M. C., Espino, J., & Martín-Vertedor, D. (2017). Chemical composition and bioactivity of essential oils from flower and fruit of Thymbra capitata and Thymus species. Journal of Food Science and Technology, 54(7), 1857-1865. doi:10.1007/s13197-017-2617-5Alves, T. M. de A., Silva, A. F., Brandão, M., Grandi, T. S. M., Smânia, E. de F. A., Smânia Júnior, A., & Zani, C. L. (2000). Biological screening of Brazilian medicinal plants. Memórias do Instituto Oswaldo Cruz, 95(3), 367-373. doi:10.1590/s0074-02762000000300012BOUNATIROU, S., SMITI, S., MIGUEL, M., FALEIRO, L., REJEB, M., NEFFATI, M., … PEDRO, L. (2007). Chemical composition, antioxidant and antibacterial activities of the essential oils isolated from Tunisian Thymus capitatus Hoff. et Link. Food Chemistry, 105(1), 146-155. doi:10.1016/j.foodchem.2007.03.059Nejad Ebrahimi, S., Hadian, J., Mirjalili, M. H., Sonboli, A., & Yousefzadi, M. (2008). Essential oil composition and antibacterial activity of Thymus caramanicus at different phenological stages. Food Chemistry, 110(4), 927-931. doi:10.1016/j.foodchem.2008.02.083Casiglia, S., Bruno, M., Scandolera, E., Senatore, F., & Senatore, F. (2019). Influence of harvesting time on composition of the essential oil of Thymus capitatus (L.) Hoffmanns. & Link. growing wild in northern Sicily and its activity on microorganisms affecting historical art crafts. Arabian Journal of Chemistry, 12(8), 2704-2712. doi:10.1016/j.arabjc.2015.05.017Grayer, R. J., & Harborne, J. B. (1994). A survey of antifungal compounds from higher plants, 1982–1993. Phytochemistry, 37(1), 19-42. doi:10.1016/0031-9422(94)85005-4Kalemba, D., & Kunicka, A. (2003). Antibacterial and Antifungal Properties of Essential Oils. Current Medicinal Chemistry, 10(10), 813-829. doi:10.2174/0929867033457719Ricci, D., Fraternale, D., Giamperi, L., Bucchini, A., Epifano, F., Burini, G., & Curini, M. (2005). Chemical composition, antimicrobial and antioxidant activity of the essential oil of Teucrium marum (Lamiaceae). Journal of Ethnopharmacology, 98(1-2), 195-200. doi:10.1016/j.jep.2005.01.022Al-Mustafa, A. H., & Al-Thuniba, O. Y. (2008). Antioxidant Activity of Some Jordanian Medicinal Plants Used Traditionally for Treatment of Diabetes. Pakistan Journal of Biological Sciences, 11(3), 351-358. doi:10.3923/pjbs.2008.351.358Dhifi, W., Bellili, S., Jazi, S., Bahloul, N., & Mnif, W. (2016). Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines, 3(4), 25. doi:10.3390/medicines3040025Ruberto, G., Biondi, D., & Piattelli, M. (1992). The Essential Oil of SicilianThymus capitatus(L.) Hoffmanns, et Link. Journal of Essential Oil Research, 4(4), 417-418. doi:10.1080/10412905.1992.9698094Saija, A., Speciale, A., Trombetta, D., Leto, C., Tuttolomondo, T., La Bella, S., … Ruberto, G. (2016). Phytochemical, Ecological and Antioxidant Evaluation of Wild Sicilian Thyme: Thymbra capitata (L.) Cav . Chemistry & Biodiversity, 13(12), 1641-1655. doi:10.1002/cbdv.201600072Arras, G., & Grella, G. E. (1992). Wild thyme,Thymus capitatus, essential oil seasonal changes and antimycotic activity. Journal of Horticultural Science, 67(2), 197-202. doi:10.1080/00221589.1992.11516237Tommasi, L., Negro, C., Cerfeda, A., Nutricati, E., Zuccarello, V., De Bellis, L., & Miceli, A. (2007). Influence of Environmental Factors on Essential Oil Variability inThymbra capitata(L.) Cav. Growing Wild in Southern Puglia (Italy). Journal of Essential Oil Research, 19(6), 572-580. doi:10.1080/10412905.2007.9699335Salas, J. B., Téllez, T. R., Alonso, M. J. P., Pardo, F. M. V., de los Ángeles Cases Capdevila, M., & Rodríguez, C. G. (2010). Chemical composition and antioxidant activity of the essential oil ofThymbra capitata(L.) Cav. in Spain. Acta Botanica Gallica, 157(1), 55-63. doi:10.1080/12538078.2010.10516189Rodrigues, L. S., Monteiro, P., Maldoa-Martins, M., Monteiro, A., Povoa, O., & Teixeira, G. (2006). BIODIVERSITY STUDIES ON PORTUGUESE THYMBRA CAPITATA. Acta Horticulturae, (723), 127-132. doi:10.17660/actahortic.2006.723.13El Hadj Ali, I. B., Guetat, A., & Boussaid, M. (2012). Variation of Volatiles in Tunisian Populations of Thymbra capitata (L.) Cav. (Lamiaceae). Chemistry & Biodiversity, 9(7), 1272-1285. doi:10.1002/cbdv.201100344Katz, D. A., Sneh, B., & Friedman, J. (1987). The allelopathic potential ofCoridothymus capitatus L. (Labiatae). Preliminary studies on the roles of the shrub in the inhibition of annuals germination and/or to promote allelopathically active actinomycetes. Plant and Soil, 98(1), 53-66. doi:10.1007/bf02381727Dudai, N., Poljakoff-Mayber, A., Mayer, A. M., Putievsky, E., & Lerner, H. R. (1999). Journal of Chemical Ecology, 25(5), 1079-1089. doi:10.1023/a:1020881825669Saoud, I., Hamrouni, L., Gargouri, S., Amri, I., Hanana, M., Fezzani, T., … Jamoussi, B. (2013). Chemical composition, weed killer and antifungal activities of Tunisian thyme (Thymus capitatusHoff. et Link.) essential oils. Acta Alimentaria, 42(3), 417-427. doi:10.1556/aalim.42.2013.3.15Chaimovitsh, D., Shachter, A., Abu-Abied, M., Rubin, B., Sadot, E., & Dudai, N. (2016). Herbicidal Activity of Monoterpenes Is Associated with Disruption of Microtubule Functionality and Membrane Integrity. Weed Science, 65(1), 19-30. doi:10.1614/ws-d-16-00044.1Verdeguer, M., Castañeda, L. G., Torres-Pagan, N., Llorens-Molina, J. A., & Carrubba, A. (2020). Control of Erigeron bonariensis with Thymbra capitata, Mentha piperita, Eucalyptus camaldulensis, and Santolina chamaecyparissus Essential Oils. Molecules, 25(3), 562. doi:10.3390/molecules25030562Cordeau, S., Triolet, M., Wayman, S., Steinberg, C., & Guillemin, J.-P. (2016). Bioherbicides: Dead in the water? A review of the existing products for integrated weed management. Crop Protection, 87, 44-49. doi:10.1016/j.cropro.2016.04.016Mahmood, I., Imadi, S. R., Shazadi, K., Gul, A., & Hakeem, K. R. (2016). Effects of Pesticides on Environment. Plant, Soil and Microbes, 253-269. doi:10.1007/978-3-319-27455-3_13Harker, K. N., & O’Donovan, J. T. (2013). Recent Weed Control, Weed Management, and Integrated Weed Management. Weed Technology, 27(1), 1-11. doi:10.1614/wt-d-12-00109.1Olson, S. (2015). An Analysis of the Biopesticide Market Now and Where it is Going. Outlooks on Pest Management, 26(5), 203-206. doi:10.1564/v26_oct_04Santamarina, M., Ibáñez, M., Marqués, M., Roselló, J., Giménez, S., & Blázquez, M. (2017). Bioactivity of essential oils in phytopathogenic and post-harvest fungi control. Natural Product Research, 31(22), 2675-2679. doi:10.1080/14786419.2017.1286479Tuttolomondo, T., Dugo, G., Leto, C., Cicero, N., Tropea, A., Virga, G., … La Bella, S. (2015). Agronomical and chemical characterisation ofThymbra capitata(L.) Cav. biotypes from Sicily, Italy. Natural Product Research, 29(14), 1289-1299. doi:10.1080/14786419.2014.997726Miguel, M. G., Gago, C., Antunes, M. D., Megías, C., Cortés-Giraldo, I., Vioque, J., … Figueiredo, A. C. (2015). Antioxidant and Antiproliferative Activities of the Essential Oils fromThymbra capitataandThymusSpecies Grown in Portugal. Evidence-Based Complementary and Alternative Medicine, 2015, 1-8. doi:10.1155/2015/851721Karousou, R., Koureas, D. N., & Kokkini, S. (2005). Essential oil composition is related to the natural habitats: Coridothymus capitatus and Satureja thymbra in NATURA 2000 sites of Crete. Phytochemistry, 66(22), 2668-2673. doi:10.1016/j.phytochem.2005.09.020Vasilakoglou, I., Dhima, K., Paschalidis, K., & Ritzoulis, C. (2013). Herbicidal potential onLolium rigidumof nineteen major essential oil components and their synergy. Journal of Essential Oil Research, 25(1), 1-10. doi:10.1080/10412905.2012.751054Hazrati, H., Saharkhiz, M. J., Niakousari, M., & Moein, M. (2017). Natural herbicide activity of Satureja hortensis L. essential oil nanoemulsion on the seed germination and morphophysiological features of two important weed species. Ecotoxicology and Environmental Safety, 142, 423-430. doi:10.1016/j.ecoenv.2017.04.041Pinheiro, P. F., Costa, A. V., Alves, T. de A., Galter, I. N., Pinheiro, C. A., Pereira, A. F., … Fontes, M. M. P. (2015). Phytotoxicity and Cytotoxicity of Essential Oil from Leaves of Plectranthus amboinicus, Carvacrol, and Thymol in Plant Bioassays. Journal of Agricultural and Food Chemistry, 63(41), 8981-8990. doi:10.1021/acs.jafc.5b03049Tworkoski, T. (2002). Herbicide effects of essential oils. Weed Science, 50(4), 425-431. doi:10.1614/0043-1745(2002)050[0425:heoeo]2.0.co;2Benvenuti, S., Cioni, P. L., Flamini, G., & Pardossi, A. (2017). Weeds for weed control: Asteraceae essential oils as natural herbicides. Weed Research, 57(5), 342-353. doi:10.1111/wre.12266N. MALPASSI, R. (2006). Herbicide effects on cuticle ultrastructure in Eleusine indica and Portulaca oleracea. BIOCELL, 30(1), 51-56. doi:10.32604/biocell.2006.30.051Schreiber, L. (1995). A mechanistic approach towards surfactant/wax interactions: Effects of octaethyleneglycolmonododecylether on sorption and diffusion of organic chemicals in reconstituted cuticular wax of barley leaves. Pesticide Science, 45(1), 1-11. doi:10.1002/ps.2780450102Hull, H. M., Morton, H. L., & Wharrie, J. R. (1975). Environmental influences on cuticle development and resultant foliar penetration. The Botanical Review, 41(4), 421-452. doi:10.1007/bf02860832Kern, A. J., Jackson, L. L., & Dyer, W. E. (1997). Fatty acid and wax biosynthesis in susceptible and triallate-resistantAvena fatuaL. Pesticide Science, 51(1), 21-26. doi:10.1002/(sici)1096-9063(199709)51:13.0.co;2-9SANYAL, D., BHOWMIK, P. C., & REDDY, K. N. (2008). Effects of surfactants on primisulfuron activity in barnyardgrass (Echinochloa crus-galli [L.] Beauv.) and green foxtail (Setaria viridis [L.] Beauv.). Weed Biology and Management, 8(1), 46-53. doi:10.1111/j.1445-6664.2007.00273.xPrinciples of Soil and Plant Water Relations. (2014). doi:10.1016/c2013-0-12871-1Kim, H. K., Park, J., & Hwang, I. (2014). Investigating water transport through the xylem network in vascular plants. Journal of Experimental Botany, 65(7), 1895-1904. doi:10.1093/jxb/eru075Norris, R. F. (1974). PENETRATION OF 2,4-D IN RELATION TO CUTICLE THICKNESS. American Journal of Botany, 61(1), 74-79. doi:10.1002/j.1537-2197.1974.tb06029.xSchönherr, J., & Riederer, M. (1989). Foliar Penetration and Accumulation of Organic Chemicals in Plant Cuticles. Reviews of Environmental Contamination and Toxicology, 1-70. doi:10.1007/978-1-4613-8850-0_1GOURET, E., ROHR, R., & CHAMEL, A. (1993). Ultrastructure and chemical composition of some isolated plant cuticles in relation to their permeability to the herbicide, diuron. New Phytologist, 124(3), 423-431. doi:10.1111/j.1469-8137.1993.tb03832.xRiederer, M., & Schönherr, J. (1985). Accumulation and transport of (2,4-dichlorophenoxy)acetic acid in plant cuticles. Ecotoxicology and Environmental Safety, 9(2), 196-208. doi:10.1016/0147-6513(85)90022-3Melo, C. R., Picanço, M. C., Santos, A. A., Santos, I. B., Pimentel, M. F., Santos, A. C. C., … Bacci, L. (2018). Toxicity of essential oils of Lippia gracilis chemotypes and their major compounds on Diaphania hyalinata and non-target species. Crop Protection, 104, 47-51. doi:10.1016/j.cropro.2017.10.013Araniti, F., Graña, E., Krasuska, U., Bogatek, R., Reigosa, M. J., Abenavoli, M. R., & Sánchez-Moreiras, A. M. (2016). Loss of Gravitropism in Farnesene-Treated Arabidopsis Is Due to Microtubule Malformations Related to Hormonal and ROS Unbalance. PLOS ONE, 11(8), e0160202. doi:10.1371/journal.pone.0160202Smyth, D. R. (2016). Helical growth in plant organs: mechanisms and significance. Development, 143(18), 3272-3282. doi:10.1242/dev.134064Graña, E., Costas-Gil, A., Longueira, S., Celeiro, M., Teijeira, M., Reigosa, M. J., & Sánchez-Moreiras, A. M. (2017). Auxin-like effects of the natural coumarin scopoletin on Arabidopsis cell structure and morphology. Journal of Plant Physiology, 218, 45-55. doi:10.1016/j.jplph.2017.07.007Verbelen, J.-P., Le, J., Vissenberg, K., De Cnodder, T., Vandenbussche, F., Sugimoto, K., & Van Der Straeten, D. (2008). Microtubules And The Control Of Cell Elongation In Arabidopsis Roots. NATO Science for Peace and Security Series C: Environmental Security, 73-90. doi:10.1007/978-1-4020-8843-8_4Blume, Y. B., Krasylenko, Y. A., & Yemets, A. I. (2012). Effects of phytohormones on the cytoskeleton of the plant cell. Russian Journal of Plant Physiology, 59(4), 515-529. doi:10.1134/s1021443712040036López-González, D., Costas-Gil, A., Reigosa, M. J., Araniti, F., & Sánchez-Moreiras, A. M. (2020). A natural indole alkaloid, norharmane, affects PIN expression patterns and compromises root growth in Arabidopsis thaliana. Plant Physiology and Biochemistry, 151, 378-390. doi:10.1016/j.plaphy.2020.03.047The International Herbicide-Resistant Weed Databasewww.weedscience.orgAngelini, L. G., Carpanese, G., Cioni, P. L., Morelli, I., Macchia, M., & Flamini, G. (2003). Essential Oils from Mediterranean Lamiaceae as Weed Germination Inhibitors. Journal of Agricultural and Food Chemistry, 51(21), 6158-6164. doi:10.1021/jf0210728DÍAZ-TIELAS, C., GRAÑA, E., SOTELO, T., REIGOSA, M. J., & SÁNCHEZ-MOREIRAS, A. M. (2012). The natural compound trans-chalcone induces programmed cell death in Arabidopsis thaliana roots. Plant, Cell & Environment, 35(8), 1500-1517. doi:10.1111/j.1365-3040.2012.02506.

    Accessory gene regulator (Agr) functionality in Staphylococcus aureus derived from lower respiratory tract infections

    Get PDF
    Altres ajuts: This work has been funded by the project PI13/01418 which is part of "Plan Nacional de I+D+I" and co-funded by ISCIII-Subdirección General de Evaluacioón and "Fondo Europeo de Desarrollo Regional"(FEDER).D. Domínguez-Villanueva is funded by "Plan Nacional de I+D+I" and co-funded by ISCIII-Subdirección General de Evaluación and "Fondo Europeo de Desarrollo Regional"(FEDER). M. Gomes-Fernandes is funded by CAPES Foundation, Ministry of Education of Brazil (Brasılia, Brazil). Maisem Laabei was supported by a joint ERS/SEPAR fellowship (LTRF2015).This work also received a grant from the Spanish Society of Pneumology and Thoracic Surgery (SEPAR054/2011).Objective. Characterization of Staphylococcus aureus clinical isolates derived from lower respiratory tract infections (LRTIs), and correlation between the functionality of the accessory gene regulator (Agr) and genotypic and phenotypic characteristics, clinical variables and clinical outcome. Methods. S aureus isolates derived from LRTIs and control groups (nasal carriage and bacteraemia) were genotyped using StaphyType DNA microarray. Agr activity was evaluated using the CAMP synergistic haemolysis assay and the Vesicle Lysis Test (VLT). Discordant strains were analysed by quantitative reverse- transcriptase real-time PCR (qRT-PCR). Results. Agr was functional in 79.7% and 84.5% of strains according to the CAMP and VLT assays respectively. Higher concordance with RNAIII expression measured by qRT-PCR was observed with the VLT assay (76.2%) compared with the CAMP assay (23.8%). No statistically significant differences were observed in Agr functionality between the study groups, nor the phenotypical/genotypical bacterial characteristics. No association between increased mortality/respiratory complications and Agr function was observed. Conclusions. Agr activity was high (82.2%) in isolates from LRTIs suggesting the importance of this global regulator in lower respiratory tract colonisation and infection. However, equally high Agr activity was observed in isolates derived from nasal carriage and bacteraemia, contradictory to previous observations. Agr functionality measured by the VLT assay was superior to CAMP assay

    Towards a Muon Collider

    Full text link
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work.Comment: 118 pages, 103 figure

    Towards a muon collider

    Get PDF
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work

    Erratum:Towards a muon collider

    Get PDF

    Towards a muon collider

    Get PDF
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work

    Erratum: Towards a muon collider

    Get PDF
    The original online version of this article was revised: The additional reference [139] has been added. Tao Han’s ORICD ID has been incorrectly assigned to Chengcheng Han and Chengcheng Han’s ORCID ID to Tao Han. Yang Ma’s ORCID ID has been incorrectly assigned to Lianliang Ma, and Lianliang Ma’s ORCID ID to Yang Ma. The original article has been corrected
    corecore