32 research outputs found
Role of the Two Component Signal Transduction System CpxAR in Conferring Cefepime and Chloramphenicol Resistance in Klebsiella pneumoniae NTUH-K2044
Background: Klebsiella pneumoniae is a Gram-negative, non-motile, facultative anaerobe belonging to the Enterobacteriaceae family of the c-Proteobacteria class in the phylum Proteobacteria. Multidrug resistant K. pneumoniae have caused major therapeutic problems worldwide due to emergence of extended-spectrum b-lactamase producing strains. Twocomponent systems serve as a basic stimulus-response coupling mechanism to allow organisms to sense and respond to changes in many different environmental conditions including antibiotic stress. Principal Findings: In the present study, we investigated the role of an uncharacterized cpxAR operon in bacterial physiology and antimicrobial resistance by generating isogenic mutant (DcpxAR) deficient in the CpxA/CpxR component derived from the hyper mucoidal K1 strain K. pneumoniae NTUH-K2044. The behaviour of DcpxAR was determined under hostile conditions, reproducing stresses encountered in the gastrointestinal environment and deletion resulted in higher sensitivity to bile, osmotic and acid stresses. The DcpxAR was more susceptible to b-lactams and chloramphenicol than the wild-type strain, and complementation restored the altered phenotypes. The relative change in expression of acrB, acrD, eefB efflux genes were decreased in cpxAR mutant as evidenced by qRT-PCR. Comparison of outer membrane protein profiles indicated a conspicuous difference in the knock out background. Gel shift assays demonstrated direct binding of CpxR KP to promoter region of ompC KP in a concentration dependent manner
Multiple Geographic Origins of Commensalism and Complex Dispersal History of Black Rats
The Black Rat (Rattus rattus) spread out of Asia to become one of the world's worst agricultural and urban pests, and a reservoir or vector of numerous zoonotic diseases, including the devastating plague. Despite the global scale and inestimable cost of their impacts on both human livelihoods and natural ecosystems, little is known of the global genetic diversity of Black Rats, the timing and directions of their historical dispersals, and the risks associated with contemporary movements. We surveyed mitochondrial DNA of Black Rats collected across their global range as a first step towards obtaining an historical genetic perspective on this socioeconomically important group of rodents. We found a strong phylogeographic pattern with well-differentiated lineages of Black Rats native to South Asia, the Himalayan region, southern Indochina, and northern Indochina to East Asia, and a diversification that probably commenced in the early Middle Pleistocene. We also identified two other currently recognised species of Rattus as potential derivatives of a paraphyletic R. rattus. Three of the four phylogenetic lineage units within R. rattus show clear genetic signatures of major population expansion in prehistoric times, and the distribution of particular haplogroups mirrors archaeologically and historically documented patterns of human dispersal and trade. Commensalism clearly arose multiple times in R. rattus and in widely separated geographic regions, and this may account for apparent regionalism in their associated pathogens. Our findings represent an important step towards deeper understanding the complex and influential relationship that has developed between Black Rats and humans, and invite a thorough re-examination of host-pathogen associations among Black Rats
The MAPK/ERK Cascade Targets Both Elk-1 and cAMP Response Element-Binding Protein to Control Long-Term Potentiation-Dependent Gene Expression in the Dentate Gyrus In Vivo
International audienc
Unraveling a role for dopamine in Huntington's disease: the dual role of reactive oxygen species and D2 receptor stimulation
Huntington's disease (HD), an inherited neurodegenerative disorder, results from an abnormal polyglutamine extension in the N-terminal region of the huntingtin protein. This mutation leads to protein aggregation and neurotoxicity. Despite its widespread expression in the brain and body, mutated huntingtin causes selective degeneration of striatal projection neurons. In the present study, we investigate the role of dopamine (DA) in this preferential vulnerability. Using primary cultures of striatal neurons transiently expressing GFP-tagged-exon 1 of mutated huntingtin, we show that low doses of DA (100 microM) act synergistically with mutated huntingtin to activate the proapoptotic transcription factor c-Jun. Surprisingly, DA also increases aggregate formation of mutated huntingtin in all cellular compartments, including neurites, soma, and nuclei. DA-dependent potentiation of c-Jun activation was reversed by ascorbate, a reactive oxygen species (ROS) scavenger, and SP-600125, a selective inhibitor of the c-Jun N-terminal kinase (JNK) pathway. By contrast, DA effects on aggregate formation were reversed by a selective D2 receptor antagonist and reproduced by a D2 agonist. Similarly, striatal neurons from D2 knockout mice showed no effect of DA on aggregate formation. Blocking ROS production, JNK activation, or D2 receptor stimulation significantly reversed DA aggravation of mutated huntingtin-induced striatal death. The combined treatment with the ROS scavenger and D2 antagonist totally reversed DA's effects on mutated huntingtin-induced striatal death. Thus, the present results provide insights into the cellular mechanisms that govern striatal vulnerability in HD and strongly support a dual role of JNK activation and D2 receptor signaling in this process
The Mitochondrial Toxin 3-Nitropropionic Acid Induces Striatal Neurodegeneration via a c-Jun N-Terminal Kinase/c-Jun Module
International audienc
Glutamate induces histone H3 phosphorylation but not acetylation in striatal neurons: role of mitogen- and stress-activated kinase-1.
Chromatin remodelling is thought to play a key role in gene regulation that underlies long-term synaptic plasticity and memory formation. The dynamic process of chromatin remodelling requires post-translational modifications of histones, a group of highly basic proteins that are tightly linked to DNA. In the present study, we investigated histone H3 modifications in response to glutamate stimulation leading to c-Fos and c-Jun induction in an in vitro model system of striatal neurons in culture. Intracellular signalling pathways implicated in these modifications were analysed. Histone H3 acetylation was strong in basal conditions and unmodified by glutamate treatment. By contrast, glutamate induced a strong phosphorylation of histone H3 that was inhibited by selective inhibitors of the extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (p38 MAPK) pathways, U0126 and SB203580, respectively. Blocking activation of mitogen- and stress-activated kinase 1 (MSK1), a kinase downstream ERK and p38 MAPK, by pharmacological approach or using striatal cells from MSK1 deficient mice, totally abolished H3 phosphorylation, as well as c-Fos and c-Jun induction. Chromatin immunoprecipitation assays confirmed increased levels of phosphorylated H3 at the c-jun promoter. Altogether, our data highlight the crucial role of MSK1 in the nucleosomal response necessary for gene induction in neuronal cells
Mucus composition and bacterial communities associated with the tissue and skeleton of three scleractinian corals maintained under culture conditions
International audienceCorals live in close association with bacterial communities, but the nature of the relationship is still poorly understood. In this study, three scleractinian coral species, Galaxea fascicularis, Pavona cactus and Turbinaria reniformis were incubated under different laboratory conditions, and the composition of the bacterial community associated with their tissue or skeleton was compared between species or between species and seawater using denaturing gradient gel electrophoresis (DGGE). The amount of dissolved organic carbon (DOC) excreted and the mucus glycoconjugate composition were also determined for each species. The aim of the study was to assess if the bacterial community composition was species-specific or linked either to the seawater composition, or to the quality and quantity of carbon released by each coral. Results obtained showed that DOC release was significantly different (P < 0.0001) for the three species, with the highest excretion rate for G. fascicularis. Also, the mucus of G. fascicularis and P. cactus mainly contained galactose and glucose whereas the mucus of T. reniformis contained more glucose and xylose. Cluster analyses of microbial community composition showed that the bacterial community was species-specific in the coral tissue but not in the skeleton, in all conditions. It remained specific when corals were incubated in the same or in different aquaria, and under different seawater renewal rates. Since DOC release rates and bacterial composition were both different according to the coral species considered, a link might be suggested between the two parameters. Sequencing of DGGE bands indicated that some bacterial phylotypes were consistently retrieved in all samples of a given species
Dopamine induces a PI3-kinase-independent activation of Akt in striatal neurons: a new route to cAMP response element-binding protein phosphorylation
Akt is classically described as a prosurvival serine/threonine kinase activated in response to trophic factors. After activation by phosphoinositide 3-kinase (PI3-kinase), it can translocate to the nucleus where it promotes specific genetic programs by catalyzing phosphorylation of transcription factors. We report here that both dopamine (DA) D1 (SKF38393) and D2 (quinpirole) agonist treatments rapidly increase, in primary striatal neurons in culture, phosphorylation levels of Akt on Thr 308,a residue that is critically involved in its kinase activity. These treatments also activate the extracellular signal-regulated kinase (ERK) pathway in the same population of striatal neurons. Induction of active, phospho-Thr 308 Akt by dopamine D1 and D2 agonists is insensitive to wortmannin and thus PI3-kinase independent, in contrast to growth factor-induced Akt activity. D1- and D2-induced phospho-Thr 308 Akt is decreased by th
In vivo expression and regulation of Elk-1, a target of the extracellular-regulated kinase signaling pathway, in the adult rat brain
The transcription factor Elk-1, a nuclear target of extracellularregulated kinases (ERKs), plays a pivotal role in immediate early gene induction by external stimuli. Notably, the degree of phosphorylation of Elk-1 is tightly correlated with the level of activation of transcription of c-fos by proliferative signals. No data yet indicate the role of Elk-1 in the adult brain in vivo. To address this question, we have analyzed in the present work (1) Elk-1 mRNA and protein expression in the adult rat brain, and (2) the regulation of Elk-1 (i.e., its phosphorylation state) in an in vivo model of immediate early gene (IEG) induction: an electrical stimulation of the cerebral cortex leading to c-fos and zif268 mRNA induction in the striatum. Using in situ hybridization, we show that Elk-1 mRNA is expressed in various brain structures of adult rat, and that this expression is exclusively neuronal. We demonstrate by immunocytochemistry using various specifi