150 research outputs found

    Detection of drug-sensitizing EGFR exon 19 deletion mutations in salivary gland carcinoma

    Get PDF
    Activating mutations within the epidermal growth factor receptor (EGFR) identify lung adenocarcinoma patients with improved clinical responses to tyrosine kinase inhibitors gefitinib and erlotinib. By screening salivary gland carcinoma, two drug-sensitizing EGFR exon 19 delE746-A750 mutations were identified in an adenocystic and in a mucoepidermoid carcinoma of the parotid gland

    Epidermal growth factor receptor kinase domain mutations are rare in salivary gland carcinomas

    Get PDF
    Activating mutations within the epidermal growth factor (EGFR) tyrosine kinase domain identify non-small cell lung cancer patients with improved clinical response to tyrosine kinase inhibitor therapy. Recently, we identified two EGFR mutations in a cohort of 25 salivary gland carcinomas (SGCs) by screening the tumour samples for the both most common hotspot mutations in exons 19 and 21 by allele-specific PCR. Here, we present a comprehensive sequencing analysis of the entire critical EGFR tyrosine kinase domain in 65 SGC of the main histopathological types. We found EGFR mutations in the tyrosine kinase domain to be a rare event in SGCs. No additional mutations other than the two known exon 19 deletions (c.2235_2249del15) in a mucoepidermoid carcinoma and an adenoid cystic carcinoma have been detected. Other putative predictive markers for EGFR-targeted therapy in SGCs might be relevant and should be investigated

    Future treatment strategies of aggressive pituitary tumors

    Get PDF
    While surgery remains the first-line treatment of most aggressive pituitary adenomas, medical therapy is important as second-line or adjunctive therapy in a large proportion of patients. Dopamine agonists (DAs) are the best treatment for prolactinomas, but when DAs are not tolerated, new somatostatin receptor subtype 5 (SSTR5) inhibitors may offer an alternative in the future. Unfortunately, these are unlikely to be effective in DA-resistant prolactinomas. In acromegaly, the existing somatostatin analogs, octreotide and lanreotide, will remain the medical treatment of choice for the foreseeable future. There is an urgent need for medical therapies in Cushing’s disease, and the SSTR5 analogs could offer an effective treatment in a proportion of patients within the next few years. Finally, the medical management options for non-functioning pituitary adenomas are also very limited, and a new chimeric agent with activity towards dopamine receptors, SSTR5 and SSTR2 may help reduce adenoma recurrence in the future

    Transcriptional Profiling of Non-Small Cell Lung Cancer Cells with Activating EGFR Somatic Mutations

    Get PDF
    Activating somatic mutations in epidermal growth factor receptor (EGFR) confer unique biologic features to non-small cell lung cancer (NSCLC) cells, but the transcriptional mediators of EGFR in this subgroup of NSCLC have not been fully elucidated.Here we used genetic and pharmacologic approaches to elucidate the transcriptomes of NSCLC cell lines. We transcriptionally profiled a panel of EGFR-mutant and -wild-type NSCLC cell lines cultured in the presence or absence of an EGFR tyrosine kinase inhibitor. Hierarchical analysis revealed that the cell lines segregated on the basis of EGFR mutational status (mutant versus wild-type), and expression signatures were identified by supervised analysis that distinguished the cell lines based on mutational status (wild-type versus mutant) and type of mutation (L858R versus Delta746-750). Using an EGFR mutation-specific expression signature as a probe, we mined the gene expression profiles of two independent cohorts of NSCLC patients and found the signature in a subset. EGFR tyrosine kinase inhibitor treatment regulated the expression of multiple genes, and pharmacologic inhibition of the protein products of two of them (PTGS2 and EphA2) inhibited anchorage-independent growth in EGFR-mutant NSCLC cells.We have elucidated genes not previously associated with EGFR-mutant NSCLC, two of which enhanced the clonogenicity of these cells, distinguishing these mediators from others previously shown to maintain cell survival. These findings have potential clinical relevance given the availability of pharmacologic tools to inhibit the protein products of these genes

    Interaction of Copper-Amine With Southern Pine: Retention and Migration

    Get PDF
    The retention and leachability of copper in copper-amine (Cu-EA)-treated southern pine (SP) are influenced by the formulation and the composition of copper-amine treating solutions. The sources of copper used, Cu(OH)2, CuCO3, CuSO4, and Cu(NO3)2, in the copper-amine complex formulation affect the leachability of copper. Data show that copper-amine from CuSO4- and Cu(NO3)2-treated wood has less copper loss during laboratory water leaching than that from Cu(OH)2- and CuCO3-treated wood. Increasing the amine-to-copper molar ratio increases the copper retention by wood, but reduces the leach resistance of copper. The nature of amine ligands, such as monoethanolamine (primary amine), 2-methylamino-ethanol (secondary amine), and N, N-dimethyl-ethanolamine (tertiary amine), has some effect on copper retention and copper leaching. As the molecular weight of amine ligands increases, copper loss during leaching decreases

    ProSAAS-Derived Peptides are Colocalized with Neuropeptide Y and Function as Neuropeptides in the Regulation of Food Intake

    Get PDF
    ProSAAS is the precursor of a number of peptides that have been proposed to function as neuropeptides. Because proSAAS mRNA is highly expressed in the arcuate nucleus of the hypothalamus, we examined the cellular localization of several proSAAS-derived peptides in the mouse hypothalamus and found that they generally colocalized with neuropeptide Y (NPY), but not α-melanocyte stimulating hormone. However, unlike proNPY mRNA, which is upregulated by food deprivation in the mediobasal hypothalamus, neither proSAAS mRNA nor proSAAS-derived peptides were significantly altered by 1–2 days of food deprivation in wild-type mice. Furthermore, while proSAAS mRNA levels in the mediobasal hypothalamus were significantly lower in Cpefat/fat mice as compared to wild-type littermates, proNPY mRNA levels in the mediobasal hypothalamus and in other subregions of the hypothalamus were not significantly different between wild-type and Cpefat/fat mice. Intracerebroventricular injections of antibodies to two proSAAS-derived peptides (big LEN and PEN) significantly reduced food intake in fasted mice, while injections of antibodies to two other proSAAS-derived peptides (little LEN and little SAAS) did not. Whole-cell patch clamp recordings of parvocellular neurons in the hypothalamic paraventricular nucleus, a target of arcuate NPY projections, showed that big LEN produced a rapid and reversible inhibition of synaptic glutamate release that was spike independent and abolished by blocking postsynaptic G protein activity, suggesting the involvement of a postsynaptic G protein-coupled receptor and the release of a retrograde synaptic messenger. Taken together with previous studies, these findings support a role for proSAAS-derived peptides such as big LEN as neuropeptides regulating food intake

    Gefitinib for non-small-cell lung cancer patients with epidermal growth factor receptor gene mutations screened by peptide nucleic acid-locked nucleic acid PCR clamp

    Get PDF
    This study was prospectively designed to evaluate a phase II study of gefitinib for non-small-cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations. Clinical samples were tested for EGFR mutations by peptide nucleic acid-locked nucleic acid PCR clamp, and patients having EGFR mutations were given gefitinib 250 mg daily as the second treatment after chemotherapy. Poor PS patients omitted chemotherapy. Of 107 consecutive patients enrolled, samples from 100 patients were informative, and EGFR mutations were observed in 38 patients. Gefitinib was given to 27 patients with EGFR mutations, and the response rate was 78% (one complete response and 20 partial responses; 95% confidence interval: 58–93%). Median time to progression and median survival time (MST) from gefitinib treatment were 9.4 and 15.4 months, respectively. Grade 3 hepatic toxicity and skin toxicity were observed in one patient each. There were significant differences between EGFR mutations and wild-type patients in response rates (78 vs 14%, P=0.0017), and MST (15.4 vs 11.1 months, P=0.0135). A Cox proportional hazards model indicated that negative EGFR mutation was a secondary prognostic factor (hazards ratio: 2.259, P=0.036). This research showed the need for screening for EGFR mutations in NSCLC patients

    Essential role of the N-terminal region of TFII-I in viability and behavior

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>GTF2I </it>codes for a general intrinsic transcription factor and calcium channel regulator TFII-I, with high and ubiquitous expression, and a strong candidate for involvement in the morphological and neuro-developmental anomalies of the Williams-Beuren syndrome (WBS). WBS is a genetic disorder due to a recurring deletion of about 1,55-1,83 Mb containing 25-28 genes in chromosome band 7q11.23 including <it>GTF2I</it>. Completed homozygous loss of either the <it>Gtf2i </it>or <it>Gtf2ird1 </it>function in mice provided additional evidence for the involvement of both genes in the craniofacial and cognitive phenotype. Unfortunately nothing is now about the behavioral characterization of heterozygous mice.</p> <p>Methods</p> <p>By gene targeting we have generated a mutant mice with a deletion of the first 140 amino-acids of TFII-I. mRNA and protein expression analysis were used to document the effect of the study deletion. We performed behavioral characterization of heterozygous mutant mice to document <it>in vivo </it>implications of TFII-I in the cognitive profile of WBS patients.</p> <p>Results</p> <p>Homozygous and heterozygous mutant mice exhibit craniofacial alterations, most clearly represented in homozygous condition. Behavioral test demonstrate that heterozygous mutant mice exhibit some neurobehavioral alterations and hyperacusis or odynacusis that could be associated with specific features of WBS phenotype. Homozygous mutant mice present highly compromised embryonic viability and fertility. Regarding cellular model, we documented a retarded growth in heterozygous MEFs respect to homozygous or wild-type MEFs.</p> <p>Conclusion</p> <p>Our data confirm that, although additive effects of haploinsufficiency at several genes may contribute to the full craniofacial or neurocognitive features of WBS, correct expression of <it>GTF2I </it>is one of the main players. In addition, these findings show that the deletion of the fist 140 amino-acids of TFII-I altered it correct function leading to a clear phenotype, at both levels, at the cellular model and at the <it>in vivo </it>model.</p
    corecore