38 research outputs found

    Impacts of Policy on Electric Vehicle Diffusion

    Full text link
    Selection and design of appropriate government policies to support electric vehicle (EV) adoption can be aided by modelling the future impact of policy instruments relative to a given baseline estimate. This paper highlights the innovative application of a diffusion model to analyse complex impacts of EV policy instruments on future incremental EV uptake. Several versions of four key policy instruments are tested in the model: linking electric vehicle sales to Renewable Electricity Purchases (RE-EV), financial subsidies, smart charging incentives and a common cost metric to educate consumers about the lifetime costs of EVs. Market share between battery electric vehicles (BEVs), plug-in hybrid electric vehicles (PHEVs), hybrid electric vehicles (HEVs) and internal combustion engine vehicles (ICEVs) were forecasted out to the year 2034 across all 1.5 million households in the state of Victoria, Australia. The RE-EV scenario had the strongest performance in terms of economic and societal indicators. Non-subsidy policy instruments can also support uptake of EVs, especially in the case of encouraging BEV adoption. We found feebate scenarios were more effective policies than rebates. Rebate and feebate scenarios applied within the 2014-2019 timeframe compared better than those with longer timeframes. Our analyses showed how combined policy scenarios not only further improved EV uptake but also allowed government to fund rebates through feebate income

    Indoor environment quality and occupant productivity in the CH2 building

    Full text link
    This paper presents a summary of the results from a post-occupancy evaluation study on indoor environment quality (lEO) and occupant health, wellbeing and productivity in the Council House 2 (CH2) building, which is owned and occupied by the City of Melbourne. This case study has highlighted that the productivity of office building occupants can potentially be enhanced through good building design, and provision of a high quality, healthy, comfortable and functional interior environment, that takes account of basic occupant needs.<br /

    Emissions from dryer vents during use of fragranced and fragrance-free laundry products

    Get PDF
    Fragranced laundry products emit a range of volatile organic compounds, including hazardous air pollutants. Exposure to fragranced emissions from laundry products has been associated with adverse health effects such as asthma attacks and migraine headaches. Little is known about volatile emissions from clothes dryer vents and the effectiveness of strategies to reduce concentrations and risks. This study investigates volatile emissions from six residential dryer vents, with a focus on d-limonene. It analyses and compares concentrations of d-limonene during use of fragranced and fragrance-free laundry products, as well as changes in switching from fragranced to fragrance-free products. In households using fragranced laundry detergent, the highest concentration of d-limonene from a dryer vent was 118g/m(3) (mean 33.34g/m(3)). By contrast, in households using only fragrance-free detergent, the highest concentration of d-limonene from a dryer vent was 0.26g/m(3) (mean 0.25g/m(3)). After households using fragranced detergent switched to using fragrance-free detergent, the concentrations of d-limonene in dryer vent emissions were reduced by up to 99.7% (mean 79.1%). This simple strategy of switching to fragrance-free products significantly and almost completely eliminated d-limonene emissions. Results from this study demonstrate that changing from fragranced to fragrance-free products can be a straightforward and effective approach to reduce ambient air pollution and potential health risks

    Impacts of Policy on Electric Vehicle Diffusion Usher et al. Impacts of Policy on Electric Vehicle Diffusion

    Get PDF
    Abstract Selection and design of appropriate government policies to support electric vehicle (EV) adoption can be aided by modelling the future impact of policy instruments relative to a given baseline estimate. This paper highlights the innovative application of a diffusion model to analyse complex impacts of EV policy instruments on future incremental EV uptake. Several versions of four key policy instruments are tested in the model: linking electric vehicle sales to Renewable Electricity Purchases (RE-EV), financial subsidies, smart charging incentives and a common cost metric to educate consumers about the lifetime costs of EVs. Market share between battery electric vehicles (BEVs), plug-in hybrid electric vehicles (PHEVs), hybrid electric vehicles (HEVs) and internal combustion engine vehicles (ICEVs) were forecasted out to the year 2034 across all 1.5 million households in the state of Victoria, Australia. The RE-EV scenario had the strongest performance in terms of economic and societal indicators. Non-subsidy policy instruments can also support uptake of EVs, especially in the case of encouraging BEV adoption. We found feebate scenarios were more effective policies than rebates. Rebate and feebate scenarios applied within the 2014-2019 timeframe compared better than those with longer timeframes. Our analyses showed how combined policy scenarios not only further improved EV uptake but also allowed government to fund rebates through feebate income

    Electric Vehicles and the Smart Grid: Spatial Modelling of Impacts and Opportunities

    No full text
    In this paper we present a novel composite methodology for obtaining spatial projections of the impacts and opportunities arising from the integration of plug-in electric vehicles with future smart electricity grids. We link models of future plug-in electric vehicle uptake, travel by household members, household electricity demand, and recharge of electric vehicles. The analysis is disaggregated in each case to a mesh block or local government area level; vehicle usage and household energy demand fluctuate on a hourly, daily and seasonal basis, subject also to the longer-term trends projected for uptake of the new technology. A similarly fine grain is applied with respect to socio-economic variables. The uptake model combines features of choice modelling, multi-criteria analysis and technology diffusion theory; in this case it was applied to four competing technologies (BEV, PHEV, HEV, ICE), and calibration revealed seven major determinants of uptake: performance, annual costs, purchase cost, household income, driving distance, demographic suitability, and risk or inconvenience. The travel model projects likely patterns of vehicle usage and travel duration based on existing patterns of private vehicle usage. The household demand model includes detailed representation of housing type and usage of electrical appliances. The charge-discharge model embodies plausible algorithms for managing household electricity usage in conjunction with electric vehicle batteries. In the paper we describe the various models and report projected impacts of electric vehicles on peak electrical grid loads for the Australian state of Victoria. The impacts are presented on a spatial basis, to the level of individual mesh blocks and network feeders, under a range of energy management scenarios

    Full-scale testing, modelling and analysis of light-frame structures under lateral loading

    Get PDF
    Deposited with permission of the author. © 2002 Phillip J. Paevere.The differing needs and expectations of building owners, users and society are driving a change towards a technology-intensive, performance-based approach to the design and evaluation of light-frame structures. A critical underlying assumption of the performance-based philosophy is that performance can be predicted with reasonable accuracy and consistency. Development of improved performance prediction technologies, for light-frame structures, requires a detailed understanding of the structural behaviour of light-frame buildings, as well as the environmental loadings to which they are subjected during their lifetime. Full-scale structural testing in the laboratory, combined with analytical modelling, are essential in obtaining this understanding. This thesis presents the results of experimental and analytical investigations into the performance of light-frame structures under lateral loading. The specific objectives of this research are to:1)develop simple, experimentally validated numerical models of light-Frame structures, which can be used to predict their performance under lateral loads, particularly seismic loads; and 2) collect experimental data suitable for validation of detailed finite-element models of light-frame structures
    corecore