6 research outputs found

    A novel re-attachable stereotactic frame for MRI-guided neuronavigation and its validation in a large animal and human cadaver model

    Full text link
    OBJECTIVE: Stereotactic frame systems are the gold-standard for stereotactic surgeries, such as implantation of deep brain stimulation (DBS) devices for treatment of medically resistant neurologic and psychiatric disorders. However, frame-based systems require that the patient is awake with a stereotactic frame affixed to their head for the duration of the surgical planning and implantation of the DBS electrodes. While frameless systems are increasingly available, a reusable re-attachable frame system provides unique benefits. As such, we created a novel reusable MRI-compatible stereotactic frame system that maintains clinical accuracy through the detachment and reattachment of its stereotactic devices used for MRI-guided neuronavigation. APPROACH: We designed a reusable arc-centered frame system that includes MRI-compatible anchoring skull screws for detachment and re-attachment of its stereotactic devices. We validated the stability and accuracy of our system through phantom, in vivo mock-human porcine DBS-model and human cadaver testing. MAIN RESULTS: Phantom testing achieved a root mean square error (RMSE) of 0.94  ±  0.23 mm between the ground truth and the frame-targeted coordinates; and achieved an RMSE of 1.11  ±  0.40 mm and 1.33  ±  0.38 mm between the ground truth and the CT- and MRI-targeted coordinates, respectively. In vivo and cadaver testing achieved a combined 3D Euclidean localization error of 1.85  ±  0.36 mm (p  <  0.03) between the pre-operative MRI-guided placement and the post-operative CT-guided confirmation of the DBS electrode. SIGNIFICANCE: Our system demonstrated consistent clinical accuracy that is comparable to conventional frame and frameless stereotactic systems. Our frame system is the first to demonstrate accurate relocation of stereotactic frame devices during in vivo MRI-guided DBS surgical procedures. As such, this reusable and re-attachable MRI-compatible system is expected to enable more complex, chronic neuromodulation experiments, and lead to a clinically available re-attachable frame that is expected to decrease patient discomfort and costs of DBS surgery

    A diamond-based electrode for detection of neurochemicals in the human brain

    Get PDF
    Deep brain stimulation (DBS), a surgical technique to treat certain neurologic and psychiatric conditions, relies on pre-determined stimulation parameters in an open-loop configuration. The major advancement in DBS devices is a closed-loop system that uses neurophysiologic feedback to dynamically adjust stimulation frequency and amplitude. Stimulation-driven neurochemical release can be measured by fast-scan cyclic voltammetry (FSCV), but existing FSCV electrodes rely on carbon fiber, which degrades quickly during use and is therefore unsuitable for chronic neurochemical recording. To address this issue, we developed durable, synthetic boron-doped diamond-based electrodes capable of measuring neurochemical release in humans. Compared to carbon fiber electrodes, they were more than two orders-of-magnitude more physically-robust and demonstrated longevity in vitro without deterioration. Applied for the first time in humans, diamond electrode recordings from thalamic targets in patients (n = 4) undergoing DBS for tremor produced signals consistent with adenosine release at a sensitivity comparable to carbon fiber electrodes. (Clinical trials # NCT01705301)
    corecore