9 research outputs found

    The MPIfR-MeerKAT Galactic Plane Survey - I. System set-up and early results

    Get PDF
    Galactic plane radio surveys play a key role in improving our understanding of a wide range of astrophysical phenomena. Performing such a survey using the latest interferometric telescopes produces large data rates necessitating a shift towards fully or quasi-real-time data analysis with data being stored for only the time required to process them. We present here the overview and set-up for the 3000-h Max-Planck-Institut fĂŒr Radioastronomie (MPIfR)-MeerKAT Galactic Plane Survey (MMGPS). The survey is unique by operating in a commensal mode, addressing key science objectives of the survey including the discovery of new pulsars and transients and studies of Galactic magnetism, the interstellar medium and star formation rates. We explain the strategy coupled with the necessary hardware and software infrastructure needed for data reduction in the imaging, spectral, and time domains. We have so far discovered 78 new pulsars including 17 confirmed binary systems of which two are potential double neutron star systems. We have also developed an imaging pipeline sensitive to the order of a few tens of micro-Jansky () with a spatial resolution of a few arcseconds. Further science operations with an in-house built S-band receiver operating between 1.7 and 3.5 GHz are about to commence. Early spectral line commissioning observations conducted at S-band, targeting transitions of the key molecular gas tracer CH at 3.3 GHz already illustrate the spectroscopic capabilities of this instrument. These results lay a strong foundation for future surveys with telescopes like the Square Kilometre Array (SKA)

    Mass estimates from optical modelling of the new TRAPUM redback PSR J1910−5320

    Get PDF
    Spider pulsars continue to provide promising candidates for neutron star mass measurements. Here we present the discovery of PSR J1910−5320, a new millisecond pulsar discovered in a MeerKAT observation of an unidentified Fermi-LAT gamma-ray source. This pulsar is coincident with a recently identified candidate redback binary, independently discovered through its periodic optical flux and radial velocity. New multicolour optical light curves obtained with ULTRACAM/New Technology Telescope in combination with MeerKAT timing and updated SOAR/Goodman spectroscopic radial velocity measurements allow a mass constraint for PSR J1910−5320. icarus optical light curve modelling, with streamlined radial velocity fitting, constrains the orbital inclination and companion velocity, unlocking the binary mass function given the precise radio ephemeris. Our modelling aims to unite the photometric and spectroscopic measurements available by fitting each simultaneously to the same underlying physical model, ensuring self-consistency. This targets centre-of-light radial velocity corrections necessitated by the irradiation endemic to spider systems. Depending on the gravity darkening prescription used, we find a moderate neutron star mass of either 1.6 ± 0.2 or 1.4 ± 0.2 M⊙. The companion mass of either 0.45 ± 0.04 or 0.43−0.03+0.040.43^{+0.04}_{-0.03}M⊙ also further confirms PSR J1910−5320 as an irradiated redback spider pulsar

    A targeted radio pulsar survey of redback candidates with MeerKAT

    No full text
    International audienceRedbacks are millisecond pulsar binaries with low mass, irradiated companions. These systems have a rich phenomenology that can be used to probe binary evolution models, pulsar wind physics, and the neutron star mass distribution. A number of high-confidence redback candidates have been identified through searches for variable optical and X-ray sources within the localisation regions of unidentified but pulsar-like Fermi-LAT gamma-ray sources. However, these candidates remain unconfirmed until pulsations are detected. As part of the TRAPUM project, we searched for radio pulsations from six of these redback candidates with MeerKAT. We discovered three new radio millisecond pulsars, PSRs J0838−-2527, J0955−-3947 and J2333−-5526, confirming their redback nature. PSR J0838−-2827 remained undetected for two years after our discovery despite repeated observations, likely due to evaporated material absorbing the radio emission for long periods of time. While, to our knowledge, this system has not undergone a transition to an accreting state, the disappearance, likely caused by extreme eclipses, illustrates the transient nature of spider pulsars and the heavy selection bias in uncovering their radio population. Radio timing enabled the detection of gamma-ray pulsations from all three pulsars, from which we obtained 15-year timing solutions. All of these sources exhibit complex orbital period variations consistent with gravitational quadrupole moment variations in the companion stars. These timing solutions also constrain the binary mass ratios, allowing us to narrow down the pulsar masses. We find that PSR J2333−-5526 may have a neutron star mass in excess of 2 M⊙_{\odot}

    MeerKAT discovery of 13 new pulsars in Omega Centauri

    Get PDF
    International audienceThe most massive globular cluster in our Galaxy, Omega Centauri, is an interesting target for pulsar searches, because of its multiple stellar populations and the intriguing possibility that it was once the nucleus of a galaxy that was absorbed into the Milky Way. The recent discoveries of pulsars in this globular cluster and their association with known X-ray sources was a hint that, given the large number of known X-ray sources, there is a much larger undiscovered pulsar population. We used the superior sensitivity of the MeerKAT radio telescope to search for pulsars in Omega Centauri. In this paper, we present some of the first results of this survey, including the discovery of 13 new pulsars; the total number of known pulsars in this cluster currently stands at 18. At least half of them are in binary systems and preliminary orbital constraints suggest that most of the binaries have light companions. We also discuss the ratio between isolated and binaries pulsars and how they were formed in this cluster

    TRAPUM discovery of thirteen new pulsars in NGC 1851 using MeerKAT

    Get PDF
    We report the discovery of 13 new pulsars in the globular cluster NGC 1851 by the TRAPUM Large Survey Project using the MeerKAT radio telescope. The discoveries consist of six isolated millisecond pulsars (MSPs) and seven binary pulsars, of which six are MSPs and one is mildly recycled. For all the pulsars, we present the basic kinematic, astrometric, and orbital parameters, where applicable, as well as their polarimetric properties, when these are measurable. Two of the binary MSPs (PSR J0514-4002D and PSR J0514-4002E) are in wide and extremely eccentric (e > 0.7) orbits with a heavy white dwarf and a neutron star as their companion, respectively. With these discoveries, NGC 1851 is now tied with M28 as the cluster with the third largest number of known pulsars (14). Its pulsar population shows remarkable similarities with that of M28, Terzan 5 and other clusters with comparable structural parameters. The newly-found pulsars are all located in the innermost regions of NGC 1851 and will likely enable, among other things, detailed studies of the cluster structure and dynamics

    TRAPUM discovery of thirteen new pulsars in NGC 1851 using MeerKAT

    No full text
    We report the discovery of 13 new pulsars in the globular cluster NGC 1851 by the TRAPUM Large Survey Project using the MeerKAT radio telescope. The discoveries consist of six isolated millisecond pulsars (MSPs) and seven binary pulsars, of which six are MSPs and one is mildly recycled. For all the pulsars, we present the basic kinematic, astrometric, and orbital parameters, where applicable, as well as their polarimetric properties, when these are measurable. Two of the binary MSPs (PSR J0514-4002D and PSR J0514-4002E) are in wide and extremely eccentric (e > 0.7) orbits with a heavy white dwarf and a neutron star as their companion, respectively. With these discoveries, NGC 1851 is now tied with M28 as the cluster with the third largest number of known pulsars (14). Its pulsar population shows remarkable similarities with that of M28, Terzan 5 and other clusters with comparable structural parameters. The newly-found pulsars are all located in the innermost regions of NGC 1851 and will likely enable, among other things, detailed studies of the cluster structure and dynamics

    The TRAPUM L-band survey for pulsars in Fermi-LAT gamma-ray sources

    No full text
    More than 100 millisecond pulsars (MSPs) have been discovered in radio observations of gamma-ray sources detected by the Fermi Large Area Telescope (LAT), but hundreds of pulsar-like sources remain unidentified. Here we present the first results from the targeted survey of Fermi-LAT sources being performed by the Transients and Pulsars with MeerKAT (TRAPUM) Large Survey Project. We observed 79 sources identified as possible gamma-ray pulsar candidates by a Random Forest classification of unassociated sources from the 4FGL catalogue. Each source was observed for 10 minutes on two separate epochs using MeerKAT's L-band receiver (856-1712 MHz), with typical pulsed flux density sensitivities of ∌\sim100 Ό\,\muJy. Nine new MSPs were discovered, eight of which are in binary systems, including two eclipsing redbacks and one system, PSR J1526−-2744, that appears to have a white dwarf companion in an unusually compact 5 hr orbit. We obtained phase-connected timing solutions for two of these MSPs, enabling the detection of gamma-ray pulsations in the Fermi-LAT data. A follow-up search for continuous gravitational waves from PSR J1526−-2744 in Advanced LIGO data using the resulting Fermi-LAT timing ephemeris yielded no detection, but sets an upper limit on the neutron star ellipticity of 2.45×10−82.45\times10^{-8}. We also detected X-ray emission from the redback PSR J1803−-6707 in data from the first eROSITA all-sky survey, likely due to emission from an intra-binary shock

    The TRAPUM L-band survey for pulsars in Fermi-LAT gamma-ray sources

    Get PDF
    More than 100 millisecond pulsars (MSPs) have been discovered in radio observations of gamma-ray sources detected by the Fermi Large Area Telescope (LAT), but hundreds of pulsar-like sources remain unidentified. Here we present the first results from the targeted survey of Fermi-LAT sources being performed by the Transients and Pulsars with MeerKAT (TRAPUM) Large Survey Project. We observed 79 sources identified as possible gamma-ray pulsar candidates by a Random Forest classification of unassociated sources from the 4FGL catalogue. Each source was observed for 10 minutes on two separate epochs using MeerKAT's L-band receiver (856-1712 MHz), with typical pulsed flux density sensitivities of ∌\sim100 Ό\,\muJy. Nine new MSPs were discovered, eight of which are in binary systems, including two eclipsing redbacks and one system, PSR J1526−-2744, that appears to have a white dwarf companion in an unusually compact 5 hr orbit. We obtained phase-connected timing solutions for two of these MSPs, enabling the detection of gamma-ray pulsations in the Fermi-LAT data. A follow-up search for continuous gravitational waves from PSR J1526−-2744 in Advanced LIGO data using the resulting Fermi-LAT timing ephemeris yielded no detection, but sets an upper limit on the neutron star ellipticity of 2.45×10−82.45\times10^{-8}. We also detected X-ray emission from the redback PSR J1803−-6707 in data from the first eROSITA all-sky survey, likely due to emission from an intra-binary shock

    The TRAPUM L-band survey for pulsars in Fermi-LAT gamma-ray sources

    No full text
    More than 100 millisecond pulsars (MSPs) have been discovered in radio observations of gamma-ray sources detected by the Fermi Large Area Telescope (LAT), but hundreds of pulsar-like sources remain unidentified. Here we present the first results from the targeted survey of Fermi-LAT sources being performed by the Transients and Pulsars with MeerKAT (TRAPUM) Large Survey Project. We observed 79 sources identified as possible gamma-ray pulsar candidates by a Random Forest classification of unassociated sources from the 4FGL catalogue. Each source was observed for 10 minutes on two separate epochs using MeerKAT's L-band receiver (856-1712 MHz), with typical pulsed flux density sensitivities of ∌\sim100 Ό\,\muJy. Nine new MSPs were discovered, eight of which are in binary systems, including two eclipsing redbacks and one system, PSR J1526−-2744, that appears to have a white dwarf companion in an unusually compact 5 hr orbit. We obtained phase-connected timing solutions for two of these MSPs, enabling the detection of gamma-ray pulsations in the Fermi-LAT data. A follow-up search for continuous gravitational waves from PSR J1526−-2744 in Advanced LIGO data using the resulting Fermi-LAT timing ephemeris yielded no detection, but sets an upper limit on the neutron star ellipticity of 2.45×10−82.45\times10^{-8}. We also detected X-ray emission from the redback PSR J1803−-6707 in data from the first eROSITA all-sky survey, likely due to emission from an intra-binary shock
    corecore