162 research outputs found

    Restorative Therapies after Stroke: Drugs, Devices and Robotics

    Get PDF
    Restorative therapies aim to improve outcome and function by promoting plasticity within a therapeutic time window between days to weeks to years. In this article, the mechanisms by which cell-based, pharmacological and robotic treatments stimulate endogenous brain remodelling after stroke, particularly neurogenesis, axonal plasticity and white-matter integrity are described with a brief outline of the potential of neuroimaging (fMRI) techniques. Stem cells aid stroke recovery via mechanisms depending on the type of cells used. Transplanted embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and neural stem cells (NSCs) can replace the missing brain cells in the Infarcted area, while adult stem cells, such as mesenchymal stem cells or multipotent stromal cells (MSCs) and MNCs, provide trophic support to enhance self-repair systems such as endogenous neurogenesis. Most preclinical studies of stem cell therapy for stroke have emphasized the need to enhance self-repair systems rather than to replace lost cells, regardless of the type of cells used. Noninvasive brain stimulation (NIBS) provides a valuable tool for interventional neurophysiology by modulating brain activity in a specific distributed, cortico-subcortical network. The two most commonly used techniques for noninvasive brain stimulation are transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). The article also discusses the potential role and current evidence for the use of pharmacological therapy, robotics and specific forms of physiotherapy regimes in optimizing stroke recovery. Neurorestoration is a concept that has been proven emphatically in several experimental models and clinical studies of stroke. Elucidating the underlying mechanisms of cell-based, pharmacological and rehabilitative therapies is of primary interest and crucial for translation of treatments to clinical use. The knowledge must provide an impetus for the development of superior, advanced and cost effective neuro restorative interventions that will enhance stroke recovery. Keywords : Cerebral stroke, stroke therapy, functional neuroimaging

    Intra-arterial versus intra-venous thrombolysis within and after the first 3 hours of stroke onset

    Get PDF
    The NINDS trial demonstrated for the first time the effectiveness of intravenous thrombolysis in improving outcome after acute ischemic stroke. The absolute benefit of this intervention was 11–13% greater chance of being normal or near normal (MRS ≤ 1) at 3 months. However, if patients with severe stroke were considered (NIHSS ≥ 20), the absolute benefit dropped to 5–6%, indicating that IV thrombolysis may not be as effective for large vessel occlusion. This observation was further supported by TCD studies that clearly demonstrated that large artery occlusions had a recanalization rate of 13–18% with IV rt-PA. Intra-arterial thrombolysis achieves recanalization rates of 60–70%. Since tissue viability is clearly important, it is time to stop defining rigid time windows and if there is a large penumbra (20–50%) and the occlusion is in a large artery, there exists a logic and a growing evidence to consider either bridge therapy or direct intra-arterial therapy

    Urban Air Pollution Modeling

    Get PDF

    The infamous story of incident stroke and inflamed gall bladder!

    Get PDF

    Optical Genome Mapping for the Molecular Diagnosis of Facioscapulohumeral Muscular Dystrophy: Advancement and Challenges

    Get PDF
    Facioscapulohumeral muscular dystrophy (FSHD) is the second most common muscular dystrophy in adults, and it is associated with local D4Z4 chromatin relaxation, mostly via the contraction of the D4Z4 macrosatellite repeat array on chromosome 4q35. In this study, we aimed to investigate the use of Optical Genome Mapping (OGM) as a diagnostic tool for testing FSHD cases from the UK and India and to compare OGM performance with that of traditional techniques such as linear gel (LGE) and Pulsed-field gel electrophoresis (PFGE) Southern blotting (SB). A total of 6 confirmed and 19 suspected FSHD samples were processed with LGE and PFGE, respectively. The same samples were run using a Saphyr Genome-Imaging Instrument (1-color), and the data were analysed using custom EnFocus FSHD analysis. OGM was able to confirm the diagnosis of FSHD1 in all FSHD1 cases positive for SB (n = 17), and D4Z4 sizing highly correlated with PFGE-SB (p < 0.001). OGM correctly identified cases with mosaicism for the repeat array contraction (n = 2) and with a duplication of the D4Z4 repeat array. OGM is a promising new technology able to unravel structural variants in the genome and seems to be a valid tool for diagnosing FSHD1

    Stroke in India: a systematic review of the incidence, prevalence and case fatality

    Get PDF
    Background: The burden of stroke is increasing in India; stroke is now the fourth leading cause of death and the fifth leading cause of disability. Previous research suggests that the incidence of stroke in India ranges between 105 and 152/100,000 people per year. However, there is a paucity of available data and a lack of uniform methods across published studies. Aim: To identify high-quality prospective studies reporting the epidemiology of stroke in India. Summary of review: A search strategy was modified from the Cochrane Stroke Strategy and adapted for a range of bibliographic databases from January 1997 to August 2020. From 7,717 identified records, nine studies were selected for inclusion; three population-based registries, a further three population-based registries also using community-based ascertainment and three community-based door-to-door surveys. Studies represented the four cities of Mumbai, Trivandrum, Ludhiana, Kolkata, the state of Punjab and 12 villages of Baruipur in the state of West Bengal. The total population denominator was 22,479,509 and 11,654 (mean 1,294 SD 1,710) people were identified with incident stroke. Crude incidence of stroke ranged from 108 to 172/100,000 people per year, crude prevalence from 26 to 757/100,000 people per year and one-month case fatality rates from 18% to 42%. Conclusions: Further high-quality evidence is needed across India to guide stroke policy and inform the development and organisation of stroke services. Future researchers should consider the World Health Organisation STEPwise approach to Surveillance (STEPS) framework, including longitudinal data collection, the inclusion of census population data and a combination of hospital-registry and comprehensive community ascertainment strategies to ensure complete stroke identification

    Neuromuscular disease genetics in under-represented populations: increasing data diversity

    Get PDF
    Neuromuscular diseases (NMDs) affect ∼15 million people globally. In high income settings DNA-based diagnosis has transformed care pathways and led to gene-specific therapies. However, most affected families are in low-to-middle income countries (LMICs) with limited access to DNA-based diagnosis. Most (86%) published genetic data is derived from European ancestry. This marked genetic data inequality hampers understanding of genetic diversity and hinders accurate genetic diagnosis in all income settings. We developed a cloud-based transcontinental partnership to build diverse, deeply-phenotyped and genetically characterized cohorts to improve genetic architecture knowledge, and potentially advance diagnosis and clinical management. We connected 18 centres in Brazil, India, South Africa, Turkey, Zambia, Netherlands and the UK. We co-developed a cloud-based data solution and trained 17 international neurology fellows in clinical genomic data interpretation. Single gene and whole exome data were analysed via a bespoke bioinformatics pipeline and reviewed alongside clinical and phenotypic data in global webinars to inform genetic outcome decisions. We recruited 6001 participants in the first 43 months. Initial genetic analyses ‘solved’ or ‘possibly solved’ ∼56% probands overall. In-depth genetic data review of the four commonest clinical categories (limb girdle muscular dystrophy, inherited peripheral neuropathies, congenital myopathy/muscular dystrophies and Duchenne/Becker muscular dystrophy) delivered a ∼59% ‘solved’ and ∼13% ‘possibly solved’ outcome. Almost 29% of disease causing variants were novel, increasing diverse pathogenic variant knowledge. Unsolved participants represent a new discovery cohort. The dataset provides a large resource from under-represented populations for genetic and translational research. In conclusion, we established a remote transcontinental partnership to assess genetic architecture of NMDs across diverse populations. It supported DNA-based diagnosis, potentially enabling genetic counselling, care pathways and eligibility for gene-specific trials. Similar virtual partnerships could be adopted by other areas of global genomic neurological practice to reduce genetic data inequality and benefit patients globally

    Evaluation of Excess Significance Bias in Animal Studies of Neurological Diseases

    Get PDF
    Animal studies generate valuable hypotheses that lead to the conduct of preventive or therapeutic clinical trials. We assessed whether there is evidence for excess statistical significance in results of animal studies on neurological disorders, suggesting biases. We used data from meta-analyses of interventions deposited in Collaborative Approach to Meta-Analysis and Review of Animal Data in Experimental Studies (CAMARADES). The number of observed studies with statistically significant results (O) was compared with the expected number (E), based on the statistical power of each study under different assumptions for the plausible effect size. We assessed 4,445 datasets synthesized in 160 meta-analyses on Alzheimer disease (n = 2), experimental autoimmune encephalomyelitis (n = 34), focal ischemia (n = 16), intracerebral hemorrhage (n = 61), Parkinson disease (n = 45), and spinal cord injury (n = 2). 112 meta-analyses (70%) found nominally (p≤0.05) statistically significant summary fixed effects. Assuming the effect size in the most precise study to be a plausible effect, 919 out of 4,445 nominally significant results were expected versus 1,719 observed (p<10-9). Excess significance was present across all neurological disorders, in all subgroups defined by methodological characteristics, and also according to alternative plausible effects. Asymmetry tests also showed evidence of small-study effects in 74 (46%) meta-analyses. Significantly effective interventions with more than 500 animals, and no hints of bias were seen in eight (5%) meta-analyses. Overall, there are too many animal studies with statistically significant results in the literature of neurological disorders. This observation suggests strong biases, with selective analysis and outcome reporting biases being plausible explanations, and provides novel evidence on how these biases might influence the whole research domain of neurological animal literature. © 2013 Tsilidis et al

    Herpes simplex encephalitis is linked with selective mitochondrial damage; a post-mortem and in vitro study

    Get PDF
    Herpes simplex virus type-1 (HSV-1) encephalitis (HSE) is the most commonly diagnosed cause of viral encephalitis in western countries. Despite antiviral treatment, HSE remains a devastating disease with high morbidity and mortality. Improved understanding of pathogenesis may lead to more effective therapies. Mitochondrial damage has been reported during HSV infection in vitro. However, whether it occurs in the human brain and whether this contributes to the pathogenesis has not been fully explored. Minocycline, an antibiotic, has been reported to protect mitochondria and limit brain damage. Minocycline has not been studied in HSV infection. In the first genome-wide transcriptomic study of post-mortem human HSE brain tissue, we demonstrated a highly preferential reduction in mitochondrial genome (MtDNA) encoded transcripts in HSE cases (n = 3) compared to controls (n = 5). Brain tissue exhibited a significant inverse correlation for immunostaining between cytochrome c oxidase subunit 1 (CO1), a MtDNA encoded enzyme subunit, and HSV-1; with lower abundance for mitochondrial protein in regions where HSV-1 was abundant. Preferential loss of mitochondrial function, among MtDNA encoded components, was confirmed using an in vitro primary human astrocyte HSV-1 infection model. Dysfunction of cytochrome c oxidase (CO), a mitochondrial enzyme composed predominantly of MtDNA encoded subunits, preceded that of succinate dehydrogenase (composed entirely of nuclear encoded subunits). Minocycline treated astrocytes exhibited higher CO1 transcript abundance, sustained CO activity and cell viability compared to non-treated astrocytes. Based on observations from HSE patient tissue, this study highlights mitochondrial damage as a critical and early event during HSV-1 infection. We demonstrate minocycline preserves mitochondrial function and cell viability during HSV-1 infection. Minocycline, and mitochondrial protection, offers a novel adjunctive therapeutic approach for limiting brain cell damage and potentially improving outcome among HSE patients
    corecore