200 research outputs found

    BioMEMS

    Get PDF
    As technological advancements widen the scope of applications for biomicroelectromechanical systems (BioMEMS or biomicrosystems), the field continues to have an impact on many aspects of life science operations and functionalities. Because BioMEMS research and development require the input of experts who use different technical languages and come from varying disciplines and backgrounds, scientists and students can avoid potential difficulties in communication and understanding only if they possess a skill set and understanding that enables them to work at the interface of engineering and biosciences. Keeping this duality in mind throughout, BioMEMS: Science and Engineering Perspectives supports and expedites the multidisciplinary learning involved in the development of biomicrosystems. Divided into nine chapters, it starts with a balanced introduction of biological, engineering, application, and commercialization aspects of the field. With a focus on molecules of biological interest, the book explores the building blocks of cells and viruses, as well as molecules that form the self-assembled monolayers (SAMs), linkers, and hydrogels used for making different surfaces biocompatible through functionalization. The book also discusses: Different materials and platforms used to develop biomicrosystems Various biological entities and pathogens (in ascending order of complexity) The multidisciplinary aspects of engineering bioactive surfaces Engineering perspectives, including methods of manufacturing bioactive surfaces and devices Microfluidics modeling and experimentation Device level implementation of BioMEMS concepts for different applications. Because BioMEMS is an application-driven field, the book also highlights the concepts of lab-on-a-chip (LOC) and micro total analysis system (μTAS), along with their pertinence to the emerging point-of-care (POC) and point-of-need (PON) applications

    BioMEMS

    Get PDF
    As technological advancements widen the scope of applications for biomicroelectromechanical systems (BioMEMS or biomicrosystems), the field continues to have an impact on many aspects of life science operations and functionalities. Because BioMEMS research and development require the input of experts who use different technical languages and come from varying disciplines and backgrounds, scientists and students can avoid potential difficulties in communication and understanding only if they possess a skill set and understanding that enables them to work at the interface of engineering and biosciences. Keeping this duality in mind throughout, BioMEMS: Science and Engineering Perspectives supports and expedites the multidisciplinary learning involved in the development of biomicrosystems. Divided into nine chapters, it starts with a balanced introduction of biological, engineering, application, and commercialization aspects of the field. With a focus on molecules of biological interest, the book explores the building blocks of cells and viruses, as well as molecules that form the self-assembled monolayers (SAMs), linkers, and hydrogels used for making different surfaces biocompatible through functionalization. The book also discusses: Different materials and platforms used to develop biomicrosystems Various biological entities and pathogens (in ascending order of complexity) The multidisciplinary aspects of engineering bioactive surfaces Engineering perspectives, including methods of manufacturing bioactive surfaces and devices Microfluidics modeling and experimentation Device level implementation of BioMEMS concepts for different applications. Because BioMEMS is an application-driven field, the book also highlights the concepts of lab-on-a-chip (LOC) and micro total analysis system (μTAS), along with their pertinence to the emerging point-of-care (POC) and point-of-need (PON) applications

    A REVIEW ON ROLE OF ANTIOXIDANTS IN DIABETES

    Get PDF
     Diabetes mellitus is a chronic metabolic disease. Oxidative stress plays a major part in the pathogenesis of diabetes. Supplementation with antioxidants and the medicinal plants which possess antioxidants activity have been reported their hypoglycemic activity. The antioxidants are used to treat and reduce the complication of diabetes mellitus. The diet supplementations of antioxidants vitamins are beneficial in the treatment of diabetes. This review article was summarizing the role of antioxidants in diabetes mellitus

    Boundary conditioning concept applied to the synthesis of microsystems using fuzzy logic approach

    Get PDF
    The burgeoning field of MicroSystems Technology (MST) has a tremendous potential for sensing and actuation of industrial systems in almost every field of human interest. This thesis proposes a synthesis of microsystems in order to explore the advantage of miniaturization by developing a technology suitable for fabricating integrated systems that consist of sensing, actuating and computing elements at the. micro level. The synthesis involves development of fabrication strategies using industrial CMOS process and design strategies, in order to manipulate the effect of inherent limitations of fabrication and other limitations due to structural configuration and environment on dynamic behavior of microsystems. Towards the success of fabrication synthesis, micromechanical components are fabricated through an industrial CMOS process, namely, the Mitel 1.5 om Double-Poly-Double-Metal process, and by post-releasing with gas phase xenon difluoride etching. The etching is described along with the details of the setup, the etching procedure and the effect of etching on end conditions of the fabricated structure. The types of structures fabricated show that they can be adopted for both piezoresistive and capacitive devices. The different factors that influence the elastic properties of both macro and micro systems include variations in structural geometry, process parameters and operational environment. A concept of boundary conditioning is proposed in this thesis as a unified approach for the quantification of the influence of structural geometry, support conditions, fabrication process and environmental influence on the dynamic behavior of the system. The influence of all the above parameters is represented by replacing the elastic influence with the equivalent spring stiffnesses. The modeling of boundary conditioning is carried out using artificial springs and boundary characteristic orthogonal polynomials in the Rayleigh-Ritz method. The eigenvalues are predicted for plate type structures with stiffeners and cutouts using this approach. The concept of boundary conditioning is applied to structural tuning and localization of vibrational response. The results obtained for manipulation of harmonic combinations and vibrational response using artificial springs are useful and interesting. The boundary conditioning conceptualizes micro or macro system into equivalent elastic system. The equivalent stiffnesses which can be estimated through experiment or other methods may include uncertainties and vagueness. The fuzzy system identification technique is applied for modeling such micro or macro systems with fuzziness on input and output parameters. Automatic fuzzy system identification is carried out using subtractive clustering method. A higher order fuzzy system identification technique is proposed for modeling complicated systems with fewer number of rules. The structural tuning of elastic systems is identified by expert modeling and subtractive clustering. The influence of structural variations of microsystems on dynamic behavior is modeled using the method of artificial springs. The static and dynamic behavior of free standing microsystems under the influence of electrostatic field and residual stress are also presented. The comparison between predicted and experimental values of snapping voltage for capacitive type systems shows a good agreement. The non-classical end conditions resulting from micromachining processes are modeled using boundary conditioning technique. The application of fuzzy system identification of the boundary conditioning of microsystems, shows a potential for direct and indirect design of microsytems for the required dynamic behavior

    Analysis of diffraction gratings by using an edge element method

    Full text link
    Typically the grating problem is formulated for TE and TM polarizations by using, respectively, the electric and magnetic fields aligned with the grating wall and perpendicular to the plane of incidence, and this leads to a one-field-component problem. For some grating profiles such as metallic gratings with a triangular profile, the prediction of TM polarization by using a standard finite-element method experiences a slower convergence rate, and this reduces the accuracy of the computed results and also introduces a numerical polarization effect. This discrepancy cannot be seen as a simple numerical issue, since it has been observed for different types of numerical methods based on the classical formulation. Hence an alternative formulation is proposed, where the grating problem is modeled by taking the electric field as unknown for TM polarization. The application of this idea to both TE and TM polarizations leads to a two-field-component problem. The purpose of the paper is to propose an edge finite-element method to solve this wave problem. A comparison of the results of the proposed formulation and the classical formulation shows improvement and robustness in the new approach. © 2005 Optical Society of America

    TOPOLOGY ZOOM TO PHYSICAL PORTS FROM A DEVICE LEVEL

    Get PDF
    Common mapping tools typically provide for gradually zooming in and out for further in-depth location information without ever switching views. Techniques are described herein that allow zoom functionality to exist in the realm of Networking Topology mapping. Using natural user interactions, a user may simply zoom-in for more in-depth information and configuration abilities without losing a device mapping

    Improved polymer solar cell performance by engineering of cathode interface

    Get PDF
    By engineering the interface between the intermediate photoactive layer and the cathode aluminum (Al) electrode, through the introduction of ultra-thin layers of various materials, in a standard\ud bulk heterojunction (BHJ) polymer solar cell (PSC) fabricated of regioregular poly(3-hexylthiophene)(rr-P3HT) and phenyl-C61-butyric acid methyl ester (PCBM), the power conversion efficiency (PCE) has\ud been effectively improved. The devices fabricated using individual single interlayer of bathocuproine (BCP), lithium fluoride (LiF) and Buckminster fullerene C60 have shown optimal efficiencies of ∼2.40%, ∼3.21% and ∼1.92% respectively. Further improvement of the photovoltaic efficiency was achieved by introducing a composite bilayer made of LiF in combination with BCP as well as with C60 at the BHJ/cathode interface. The best results were obtained by interposing a 9 nm of C60 interlayer in combination with a 0.9 nm\ud thick LiF layer, with the PCE of the PV cells being effectively increased up to 3.94% which represents an improvement of 23% as compared to the standard device with LiF interlayer alone. The photocurrent density (Jsc) versus voltage (V ) characteristic curves shows that the increase of the efficiency is essentially\ud due to an increase in Jsc. Moreover, all the sets of devices fabricated using various interlayers over a certain range of thickness exhibit an optimum PCE that is inversely proportional to the series resistance of the PV cells. We presume that interposing a C60/LiF layer at the interface could repair the poor contact at\ud the electron acceptor/cathode interface and improve the charge career extraction from the BHJ

    Estimation of Soil Moisture for Different Crops Using SAR Polarimetric Data

    Get PDF
    Soil moisture is an essential factor that influences agricultural productivity and hydrological processes. Soil moisture estimation using field detection methods takes time and is challenging. However, using Remote Sensing (RS) and Geographic Information System (GIS) technology, soil moisture parameters become easier to detect. In microwave remote sensing, synthetic aperture radar (SAR) data helps to retrieve soil moisture from more considerable depths because of its high penetration capability and the illumination power of its light source. This study aims to process the SAR Sentinel-1A data and estimate soil moisture using the Water Cloud Model (WCM). Many physical and empirical models have been developed to determine soil moisture from microwave remote sensing platforms. However, the Water Cloud Model gives more accurate results. In this study, the WCM model is used for mixed crop types. The experimental soil moisture was determined from in-situ soil samples collected from various agricultural areas. The soil backscattering values corresponding to the different soil sampling locations were derived from Sentinel SAR data. Using linear regression analysis, the laboratory's soil moisture results and soil backscattering values were correlated to arrive at a model. The model was validated using a secondary set of in-situ moisture content values taken during the same period. The R2 and RMSE of the model were observed to be 0.825 and 0.0274, respectively, proving a strong correlation between the experimental soil moisture and satellite-derived soil moisture for mixed crop field types. This paper explains the methodology for arriving at a model for soil moisture estimation. This model helps to recommend suitable crop types in large, complex areas based on predicted moisture content. Doi: 10.28991/CEJ-2023-09-06-08 Full Text: PD
    corecore