41 research outputs found
Pleiotropic associations of heterozygosity for the SERPINA1 Z allele in the UK Biobank
Homozygosity for the SERPINA1 Z allele causes α1-antitrypsin deficiency, a rare condition that can cause lung and liver disease. However, the effects of Z allele heterozygosity on nonrespiratory phenotypes, and on lung function in the general population, remain unclear.
We conducted a large, population-based study to determine Z allele effects on >2400 phenotypes in the UK Biobank (N=303 353).
Z allele heterozygosity was strongly associated with increased height (β=1.02 cm, p=3.91×10−68), and with other nonrespiratory phenotypes including increased risk of gall bladder disease, reduced risk of heart disease and lower blood pressure, reduced risk of osteoarthritis and reduced bone mineral density, increased risk of headache and enlarged prostate, as well as with blood biomarkers of liver function. Heterozygosity was associated with higher height-adjusted forced expiratory volume in 1 s (FEV1) (β=19.36 mL, p=9.21×10−4) and FEV1/forced vital capacity (β=0.0031, p=1.22×10−5) in nonsmokers, whereas in smokers, this protective effect was abolished. Furthermore, we show for the first time that sex modifies the association of the Z allele on lung function.
We conclude that Z allele heterozygosity and homozygosity exhibit opposing effects on lung function in the UK population, and that these associations are modified by smoking and sex. In exploratory analyses, heterozygosity for the Z allele also showed pleiotropic associations with nonrespiratory health-related traits and disease risk
Development and validation of dissolution method for carvedilol compression-coated tablets
The present study describes the development and validation of a dissolution method for carvedilol compression-coated tablets. Dissolution test was performed using a TDT-06T dissolution apparatus. Based on the physiological conditions of the body, 0.1N hydrochloric acid was used as dissolution medium and release was monitored for 2 hours to verify the immediate release pattern of the drug in acidic pH, followed by pH 6.8 in citric-phosphate buffer for 22 hours, to simulate a sustained release pattern in the intestine. Influences of rotation speed and surfactant concentration in medium were evaluated. Samples were analysed by validated UV visible spectrophotometric method at 286 nm. 1% sodium lauryl sulphate (SLS) was found to be optimum for improving carvedilol solubility in pH 6.8 citric-phosphate buffer. Analysis of variance showed no significant difference between the results obtained at 50 and 100 rpm. The discriminating dissolution method was successfully developed for carvedilol compression-coated tablets. The conditions that allowed dissolution determination were USP type I apparatus at 100 rpm, containing 1000 ml of 0.1N HCl for 2 hours, followed by pH 6.8 citric-phosphate buffer with 1% SLS for 22 hours at 37.0 ± 0.5 ºC. Samples were analysed by UV spectrophotometric method and validated as per ICH guidelines.O presente estudo descreve o desenvolvimento e a validação de método de dissolução para comprimidos revestidos de carvedilol. O teste de dissolução foi efetuado utilizando-se o aparelho para dissolução TDT-06T. Com base nas condições fisiológicas do organismo, utilizou-se ácido clorÃdrico 0,1 N como meio de dissolução e a liberação foi monitorada por 2 horas para se verificar o padrão de liberação imediata do fármaco em condições de pH baixo, seguidas por pH 6,8 em tampão cÃtrico-fosfato por 22 horas, para simular o padrão de liberação controlada no intestino. Avaliou-se a influência da velocidade de rotação e a concentração de tensoativo no meio. As amostras foram analisadas por método espectrofotométrico UV-visÃvel validado, em 286 nm. O laurilsulfato sódico a 1% (SLS) mostrou-se ótimo para aumentar a solubilidade do carvedilol em pH 6,8 em tampão cÃtrico-fosfato. A análise da variância não mostrou diferença significativa entre os resultados obtidos a 50 e a 100 rpm. O método da dissolução discriminante foi desenvolvido com sucesso para os comprimidos revestidos de carvedilol. As condições que permitiram a determinação da dissolução foram: aparelho USP tipo I a 100 rpm, contendo 1000 mL de HCL 0,1 N por 2 horas, seguido de pH 6,8 com tampão cÃtrico-fosfato, com 1% de SLS por 22 horas a 37,0 ± 0,5 ºC. Amostras foram analisadas por método espectrofotométrico e validadas pelas normas ICH
A synthesis of evidence for policy from behavioural science during COVID-19
Scientific evidence regularly guides policy decisions1, with behavioural science increasingly part of this process2. In April 2020, an influential paper3 proposed 19 policy recommendations (‘claims’) detailing how evidence from behavioural science could contribute to efforts to reduce impacts and end the COVID-19 pandemic. Here we assess 747 pandemic-related research articles that empirically investigated those claims. We report the scale of evidence and whether evidence supports them to indicate applicability for policymaking. Two independent teams, involving 72 reviewers, found evidence for 18 of 19 claims, with both teams finding evidence supporting 16 (89%) of those 18 claims. The strongest evidence supported claims that anticipated culture, polarization and misinformation would be associated with policy effectiveness. Claims suggesting trusted leaders and positive social norms increased adherence to behavioural interventions also had strong empirical support, as did appealing to social consensus or bipartisan agreement. Targeted language in messaging yielded mixed effects and there were no effects for highlighting individual benefits or protecting others. No available evidence existed to assess any distinct differences in effects between using the terms ‘physical distancing’ and ‘social distancing’. Analysis of 463 papers containing data showed generally large samples; 418 involved human participants with a mean of 16,848 (median of 1,699). That statistical power underscored improved suitability of behavioural science research for informing policy decisions. Furthermore, by implementing a standardized approach to evidence selection and synthesis, we amplify broader implications for advancing scientific evidence in policy formulation and prioritization
Recommended from our members
Multi-ancestry genome-wide association analyses improve resolution of genes and pathways influencing lung function and chronic obstructive pulmonary disease risk.
Lung-function impairment underlies chronic obstructive pulmonary disease (COPD) and predicts mortality. In the largest multi-ancestry genome-wide association meta-analysis of lung function to date, comprising 580,869 participants, we identified 1,020 independent association signals implicating 559 genes supported by ≥2 criteria from a systematic variant-to-gene mapping framework. These genes were enriched in 29 pathways. Individual variants showed heterogeneity across ancestries, age and smoking groups, and collectively as a genetic risk score showed strong association with COPD across ancestry groups. We undertook phenome-wide association studies for selected associated variants as well as trait and pathway-specific genetic risk scores to infer possible consequences of intervening in pathways underlying lung function. We highlight new putative causal variants, genes, proteins and pathways, including those targeted by existing drugs. These findings bring us closer to understanding the mechanisms underlying lung function and COPD, and should inform functional genomics experiments and potentially future COPD therapies
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
Fabrieksschema T.N.T.-bereiding
Document(en) uit de collectie Chemische ProcestechnologieDelftChemTechApplied Science
The effect of streptozotocin-induced hyperglycemia on N-and O-linked protein glycosylation in mouse ovary
Post-translational modification of proteins namely glycosylation influences cellular behavior, structural properties and interactions including during ovarian follicle development and atresia. However, little is known about protein glycosylation changes occurring in diabetes mellitus in ovarian tissues despite the well-known influence of diabetes on the outcome of successful embryo implantation. In our study, the use of PGC chromatography-ESI mass spectrometry in negative ion mode enabled the identification of 138 N-glycans and 6 O-glycans on the proteins of Streptozotocin-induced (STZ) diabetic mouse ovarian tissues (n = 3). Diabetic mouse ovaries exhibited a relative decrease in sialylation, fucosylation and, to a lesser extent, branched N-linked glycan structures, as well as an increase in oligomannose structures on their proteins, compared with nondiabetic mouse ovaries. Changes in N-glycans occurred in the diabetic liver tissue but were more evident in diabetic ovarian tissue of the same mouse, suggesting an organ-specific effect of diabetes mellitus on protein glycosylation. Although at a very low amount, O-GalNAc glycans of mice ovaries were present as core type 1 and core type 2 glycans; with a relative increase in the NeuGc:NeuAc ratio as the most significant difference between control and diabetic ovarian tissues. STZ-treated mice also showed a trend towards an increase in TNF-α and IL1-B inflammatory cytokines, which have previously been shown to influence protein glycosylation.Abdulrahman M Shathili, Hannah M Brown, Arun V Everest-Dass, Tiffany C Y Tan, Lindsay M Parker, Jeremy G Thompson, Nicolle H Packe