17 research outputs found
Selections from Bonnie Deal Packer\u27s scrapbooks
Scrapbook page from Bonnie Deal Packer\u27s scrapbook. This page has three black and white photographs of buildings from the Abilene Christian College campus. From left to right are: Zellner Hall, Daisy Hall, and the Administration Building. The date of creation is estimated
From Harm to Robustness: A Principled Approach to Vice Regulation
John Stuart Mill’s harm principle maintains that adult behavior cannot justifiably be subject to social coercion unless the behavior involves harm or a significant risk of harm to non-consenting others. The absence of harms to others, however, is one of the distinguishing features of many manifestations of “vices” such as the consumption of alcohol, nicotine, recreational drugs, prostitution, pornography, and gambling. It is with respect to vice policy, then, that the harm principle tends to be most constraining, and some current vice controls, such as prohibitions on drug possession and prostitution, violate Mill’s precept. In the vice arena, we seem to be willing to accept social interference with what Mill termed “self-regarding” behavior. But does that willingness then imply that any social intervention into private affairs is justifiable, that the government has just as much right to outlaw Protestantism, or shag carpets, or spicy foods, as it does to outlaw drugs? In this paper I argue that advances in neuroscience and behavioral economics offer strong evidence that vices and other potentially addictive goods or activities frequently involve less-than-rational choices, and hence are exempt from the full force of the harm principle. As an alternative guide to vice policy, and following some guidance from Mill, I propose the “robustness principle”: public policy towards addictive or vicious activities engaged in by adults should be robust with respect to departures from full rationality. That is, policies should work pretty well if everyone is completely rational, and policies should work pretty well even if many people are occasionally (or frequently) irrational in their vice-related choices. The harm and robustness principles cohere in many ways, but the robustness principle offers more scope for policies that try to direct people “for their own good,” without opening the door to tyrannical inroads upon self-regarding behavior
Simulated Rainfall-Driven Dissolution of TNT, Tritonal, Comp B and Octol Particles
Live-fire military training can deposit millimeter-sized particles of high explosives (HE) on surface soils when rounds do not explode as intended. Rainfall-driven dissolution of the particles then begins a process whereby aqueous HE solutions can enter the soil and groundwater as contaminants. We dripped water onto individual particles of TNT, Tritonal, Comp B and Octol to simulate how surface-deposited HE particles might dissolve under the action of rainfall and to use the data to verify a model that predicts HE dissolution as a function of particle size, particle composition and rainfall rate. Particle masses ranged from 1.1 to 17 mg and drip rates corresponded to nominal rainfall rates of 6 and 12 mm h-1. For the TNT and Tritonal particles, TNT solubility governed dissolution time scales, whereas the lower-solubility of RDX controlled the dissolution time of both RDX and TNT in Comp B. The large, low-solubility crystals of HMX slowed but did not control the dissolution of TNT in Octol. Predictions from a drop-impingement dissolution model agree well with dissolved-mass timeseries for TNT, Tritonal and Comp B, providing some confidence that the model will also work well when applied to the rainfall-driven, outdoor dissolution of these HE particles
Lithic grain and mineral composition of sand and sandstones from the Japan and Mariana forearc and backarc (Table 3)
One hundred and twenty point counts of Oligocene to Recent sands and sandstones from DSDP sites in the Japan and Mariana intraoceanic forearc and backarc basins demonstrate that there is a clear compositional difference between the continentally influenced Japan forearc and backarc sediments, and the totally oceanic Mariana forearc and backarc sediments. Japan forearc sediments average 10 QFL%Q, 0.82 P/F, 2 Framework%Mica, 74 LmLvLst%Lv, and 19 LmLvLst%Lst. In contrast, the Mariana forearc and backarc sediments average 0 QFL%Q, 1.00 P/F, 0 Framework%Mica, 98 LmLvLst%Lv, and 1 LmLvLst%Lst.
Sediment compositions in the Japan region are variable. The Honshu forearc sediments average 5 QFL%Q, 0.94 P/F, 1 Framework%Mica, 82 LmLvLst%Lv, and 15 LmLvLst%Lst. The Yamato Basin sediments (DSDP Site 299) average 13 QFL%Q, 0.70 P/F, 3 Framework%Mica, 78 LmLvLst%Lv, and 14 LmLvLst%Lst. The Japan Basin sediments (DSDP Site 301) average 24 QFL%Q, 0.54 P/F, 9 Framework%Mica, 58 LmLvLst%Lv, and 21 LmLvLst%Lst. P/F and Framework%Mica are higher in the Yamato Basin sediments than in the forearc sediments due to an increase in modal potassium content of volcanic rocks from east to west, on the island of Honshu. Site 301 possesses a higher QFL%Q and LmLvLst%Lst, and lower LmLvLst%Lv than Site 299 because it receives sediment from the Asian mainland as well as the island of Honshu.
DSDP Site 293 sediments, in the Mariana region, average 0.97 P/F, 1 Framework%Mica, 13 LmLvLst%Lm and 83 LmLvLst%Lv, due to their proximity to the island of Luzon. The remaining Mariana forearc and backarc sediments show a uniform composition
The evolutionary history of bees in time and space
Bees are the most significant pollinators of flowering plants. This partnership began ca. 120 million years ago, but the uncertainty of how and when bees spread across the planet has greatly obscured investigations of this key mutualism. We present a novel analysis of bee biogeography using extensive new genomic and fossil data to demonstrate that bees originated in Western Gondwana (Africa and South America). Bees likely originated in the Early Cretaceous, shortly before the breakup of Western Gondwana, and the early evolution of any major bee lineage is associated with either the South American or African land masses. Subsequently, bees colonized northern continents via a complex history of vicariance and dispersal. The notable early absences from large landmasses, particularly in Australia and India, have important implications for understanding the assembly of local floras and diverse modes of pollination. How bees spread around the world from their hypothesized Southern Hemisphere origin parallels the histories of numerous flowering plant clades, providing an essential step to studying the evolution of angiosperm pollination syndromes in space and time.</p
The evolutionary history of bees in time and space.
Bees are the most significant pollinators of flowering plants. This partnership began ca. 120 million years ago, but the uncertainty of how and when bees spread across the planet has greatly obscured investigations of this key mutualism. We present a novel analysis of bee biogeography using extensive new genomic and fossil data to demonstrate that bees originated in Western Gondwana (Africa and South America). Bees likely originated in the Early Cretaceous, shortly before the breakup of Western Gondwana, and the early evolution of any major bee lineage is associated with either the South American or African land masses. Subsequently, bees colonized northern continents via a complex history of vicariance and dispersal. The notable early absences from large landmasses, particularly in Australia and India, have important implications for understanding the assembly of local floras and diverse modes of pollination. How bees spread around the world from their hypothesized Southern Hemisphere origin parallels the histories of numerous flowering plant clades, providing an essential step to studying the evolution of angiosperm pollination syndromes in space and time