71 research outputs found

    Rotation-induced breakdown of torsional quantum control

    Get PDF
    Control of the torsional angles of nonrigid molecules is key for the development of emerging areas like molecular electronics and nanotechnology. Based on a rigorous calculation of the rotation-torsion-Stark energy levels of nonrigid biphenyl-like molecules, we show that, unlike previously believed, instantaneous rotation-torsion-Stark eigenstates of such molecules, interacting with a strong laser field, present a large degree of delocalization in the torsional coordinate even for the lowest energy states. This is due to a strong coupling between overall rotation and torsion leading to a breakdown of the torsional alignment. Thus, adiabatic control of changes on the planarity of this kind of molecule is essentially impossible unless the temperature is on the order of a few Kelvin. © 2011 American Physical Society.Spanish Government MICINN research Grant No FIS2010-18799.Peer Reviewe

    Rotation-Induced Breakdown of Torsional Quantum Control

    Get PDF
    Control of the torsional angles of nonrigid molecules is key for the development of emerging areas like molecular electronics and nanotechnology. Based on a rigorous calculation of the rotation-torsion-Stark energy levels of nonrigid biphenyl-like molecules, we show that, unlike previously believed, instantaneous rotation-torsion-Stark eigenstates of such molecules, interacting with a strong laser field, present a large degree of delocalization in the torsional coordinate even for the lowest energy states. This is due to a strong coupling between overall rotation and torsion leading to a breakdown of the torsional alignment. Thus, adiabatic control of changes on the planarity of this kind of molecule is essentially impossible unless the temperature is on the order of a few Kelvin

    Mimotope mapping as a complementary strategy to define allergen IgE-epitopes: peach Pru p 3 allergen as a model.

    Get PDF
    Lipid transfer proteins (LTPs) are the major allergens of Rosaceae fruits in the Mediterranean area. Pru p 3, the LTP and major allergen of peach, is a suitable model for studying food allergy and amino acid sequences related with its IgE-binding capacity. In this work, we sought to map IgE mimotopes on the structure of Pru p 3, using the combination of a random peptide phage display library and a three-dimensional modelling approach. Pru p 3-specific IgE was purified from 2 different pools of sera from peach allergic patients grouped by symptoms (OAS-pool or SYS-pool), and used for screening of a random dodecapeptide phage display library. Positive clones were further confirmed by ELISA assays testing individual sera from each pool. Three-dimensional modelling allowed location of mimotopes based on analysis of electrostatic properties and solvent exposure of the Pru p 3 surface. Twenty-one phage clones were selected using Pru p 3-specific IgE, 9 of which were chosen using OAS-specific IgE while the other 12 were selected with systemic-specific IgE. Peptide alignments revealed consensus sequences for each pool: L37 R39 T40 P42 D43 R44 A46 P70 S76 P78 Y79 for OAS-IgE, and N35 N36 L37 R39 T40 D43 A46 S76 I77 P78 for systemic-IgE. These 2 consensus sequences were mapped on the same surface of Pru p 3, corresponding to the helix 2-loop-helix 3 region and part of the non-structured C-terminal coil. Thus, 2 relevant conformational IgE-binding regions of Pru p 3 were identified using a random peptide phage display library. Mimotopes can be used to study the interaction between allergens and IgE, and to accelerate the process to design new vaccines and new immunotherapy strategie

    Functional roles of HypC and HupK in the biosynthesis of [NiFe] hydrogenase in Rhizobium leguminosarum.

    Get PDF
    Some rhizobia induce a hydrogen (H2)-uptake system with a [NiFe] hydrogenase along with nitrogenase to recover part of the energy lost as H2. Biosynthesis of NiFe hydrogenases is a process that ocurrs in the cytoplasm, where a number of auxiliary proteins (products of hup and hyp genes) are required to synthesize and insert the metal cofactors into the enzyme structural units. Although HypC is expressed in all hydrogenase systems, HupF and HupK are found only in bacteria that express the hydrogenase in the presence of oxygen (O2). Co-purification experiments have demonstrated HypC-HupK and HypC-HupL interactions. Results have shown that some conserved residues from HypC and HupK play a protective role of hydrogenase against the presence of O2

    Association between flower stalk elongation, an Arabidopsis developmental trait, and the subcellular location and movement dynamics of the viral non-structural protein P3.

    Full text link
    [EN] Virus infections affect plant developmental traits but this aspect of the interaction has not been extensively studied so far. Two strains ofTurnip mosaic virusdifferentially affectArabidopsisdevelopment, especially flower stalk elongation, which allowed phenotypical, cellular, and molecular characterization of the viral determinant, the P3 protein. Transiently expressed wild-type green fluorescent protein-tagged P3 proteins of both strains and selected mutants of them revealed important differences in their behaviour as endoplasmic reticulum (ER)-associated peripheral proteins flowing along the reticulum, forming punctate accumulations. Three-dimensional (3D) model structures of all expressed P3 proteins were computationally constructed through I-TASSER protein structure predictions, which were used to compute protein surfaces and map electrostatic potentials to characterize the effect of amino acid changes on features related to protein interactions and to phenotypical and subcellular results. The amino acid at position 279 was the main determinant affecting stalk development. It also determined the speed of ER-flow of the expressed proteins and their final location. A marked change in the protein surface electrostatic potential correlated with changes in subcellular location. One single amino acid in the P3 viral protein determines all the analysed differential characteristics between strains differentially affecting flower stalk development. A model proposing a role of the protein in the intracellular movement of the viral replication complex, in association with the viral 6K2 protein, is proposed. The type of association between both viral proteins could differ between the strains.This work was funded by several INIA grants. Silvia Lopez-Gonzalez was funded by a predoctoral FPI-INIA fellowship/contract. P.S. was the recipient of an EU fellowship from an EU-India bilateral agreement (BRAVE Program). We thank Professor John Walsh (Warwick University, UK) for his generous gift of virus isolates. The great technical assistance of Lucia Zurita is also acknowledged. We thank the Spanish Ministry of Science for the Severo Ochoa Excellence Accreditations to the CBGP (SEV-2016-0672).López-González, S.; Navarro Bohigues, JA.; Pacios, LF.; Sardaru, P.; Pallás Benet, V.; Sánchez, F.; Ponz, F. (2020). Association between flower stalk elongation, an Arabidopsis developmental trait, and the subcellular location and movement dynamics of the viral non-structural protein P3. Molecular Plant Pathology. 21(10):1271-1286. https://doi.org/10.1111/mpp.12976S12711286211

    T-cell epitopes of the major peach allergen, Pru p 3: Identification and differential T-cell response of peach-allergic and non-allergic subjects

    Get PDF
    Lipid transfer proteins (LTPs), particularly peach Pru p 3, are the most relevant plant food allergens in the South of Europe, and, therefore, their allergic properties have been extensively studied. However, neither T-cell epitopes nor their effect on the patients’ T-cell response has been investigated in any member of the LTP panallergen family. The objective of the present study was to map the major T-cell epitopes of Pru p 3, as well as to evaluate their induced T-cell response in peach-allergic versus control subjects. Thus, peripheral blood mononuclear cells (PBMCs) from 18 peach-allergic patients and Pru p 3-specific T-cell lines (TCLs) from 9 of them were cultured with Pru p 3 and with a panel of 17 derived peptides (10-mer overlapping in 5 amino acids representing the full sequence of Pru p 3). Proliferation in 5-day assays was carried out via tritiated-thymidine incorporation, while IL4 and IFNγ production was assessed via sandwich enzyme-linked immunosorbent tests (ELISA) of TCL culture supernatants. The results were compared to those obtained from 10 non-peach allergic control volunteers. Two consecutive peptides showed the highest activation capacity. About 74% of PBMCs and TCLs recognized them, forming a single T-epitope: Pru p 365–80. Additionally, other specific T-cell epitopes were observed. Pru p 325–35 was detected by more than 60% of TCLs from peach-allergic patients, and Pru p 345–55 only activated PBMCs from control subjects. Interestingly, TCLs from patients were associated with a Th2-type, whereas control TCLs presented a Th1-type cytokine response. The major immunogenic T-cell epitope identified in Pru p 3, Pru p 365–80, is a good candidate to develop new vaccines for hypersensitivity reactions associated with LTP allergens from Rosaceae fruits

    Molecular basis of allergen cross-reactivity: Non-specific lipid transfer proteins from wheat flour and peach fruit as models

    Get PDF
    Peach non-specific lipid transfer protein (Pru p 3; nsLTP) has been characterized as the major food allergen in the adult Mediterranean population. Its wheat homologous protein, Tri a 14 has a relevant inhalant allergen in occupational baker's asthma. Different sensitization patterns to these allergens have been found in patients with this latter disorder. The objective of the present study was to characterize IgE epitopes of Tri a 14 and to compare them with those of Pru p 3 using three complementary strategies: the analysis of IgE-binding capacity of decapeptides bound to membrane, the identification of mimotopes using a phage display random peptide library, and the analysis of the surface electrostatic potential of both allergens. Thus, synthetic overlapping decapeptides, covering the Pru p 3 and Tri a 14 amino acid sequences, were used to identify sequential regions involved in recognition of IgE from baker's asthma patients sensitized to both nsLTPs. A phage display library was screened with total IgE from the same patients, and positive clones sequentially selected using the purified allergens, allowed to identify mimotopes (conformational epitopes) of Tri a 14 and Pru p 3. Both sequential regions and mimotopes were localized in the corresponding 3D molecular surface and their electrostatic properties were analyzed. Common sequential regions with strong IgE-binding capacity (residues 31–40 and 71–80) were identified in Tri a 14 and Pru p 3, whereas regions Tri a 1451–60 and Pru p 311–20 were found specific of each allergen. A major conformational epitope (mimotope), L34H35N36R39S40S42D43G74V75L77P78Y79T80, which comprised the two common sequential epitopes, was located in Tri a 14, and a very similar one in Pru p 3. However, differences were detected on the surface electrostatic potential of both mimotopes: a first part (around residues 31–45) showed similar positive features in both allergens, whereas a second part (around residues 74–80) was markedly negative in Tri a 14 but neutral-positive in Pru p 3. Tri a 14 and Pru p 3 have a similar conformational region involved in IgE-binding, although their electrostatic features are different. Additionally, common and specific sequential IgE-binding regions were mapped in both allergens. These findings could be instrumental in understanding the cross-reactivity and specificity of sensitization to both homologous allergens

    Non‐branched β‐1,3‐glucan oligosaccharides trigger immune responses in Arabidopsis

    Get PDF
    [EN] Fungal cell walls, which are essential for environmental adaptation and host colonization by the fungus, have been evolutionarily selected by plants and animals as a source of microbe-associated molecular patterns (MAMPs) that, upon recognition by host pattern recognition receptors (PRRs), trigger immune responses conferring disease resistance. Chito-oligosaccharides [b-1,4-N-acetylglucosamine oligomers, (GlcNAc)n] are the only glycosidic structures from fungal walls that have been well-demonstrated to function as MAMPs in plants. Perception of (GlcNAc)4–8 by Arabidopsis involves CERK1, LYK4 and LYK5, three of the eight members of the LysM PRR family. We found that a glucan-enriched wall fraction from the pathogenic fungus Plectosphaerella cucumerina which was devoid of GlcNAc activated immune responses in Arabidopsis wild-type plants but not in the cerk1 mutant. Using this differential response, we identified the non-branched 1,3-b-D-(Glc) hexasaccharide as a major fungal MAMP. Recognition of 1,3-b-D-(Glc)6 was impaired in cerk1 but not in mutants defective in either each of the LysM PRR family members or in the PRR-co-receptor BAK1. Transcriptomic analyses of Arabidopsis plants treated with 1,3-b-D-(Glc)6 further demonstrated that this fungal MAMP triggers the expression of immunity-associated genes. In silico docking analyses with molecular mechanics and solvation energy calculations corroborated that CERK1 can bind 1,3-b-D-(Glc)6 at effective concentrations similar to those of (GlcNAc)4. These data support that plants, like animals, have selected as MAMPs the linear 1,3-b-D-glucans present in the walls of fungi and oomycetes. Our data also suggest that CERK1 functions as an immune co-receptor for linear 1,3-b-D-glucans in a similar way to its proposed function in the recognition of fungal chito-oligosaccharides and bacterial peptidoglycan MAMPs.S

    Arabidopsis immune responses triggered by cellulose‐ and mixed‐linked glucan‐derived oligosaccharides require a group ofleucine‐rich repeat malectinreceptor kinases

    Get PDF
    [EN] The plant immune system perceives a diversity of carbohydrate ligands from plant and microbial cell walls through the extracellular ectodomains (ECDs) of pattern recognition receptors (PRRs), which activate pattern-triggered immunity (PTI). Among these ligands are oligosaccharides derived from mixed-linked b- 1,3/b-1,4-glucans (MLGs; e.g. b-1,4-D-(Glc)2-b-1,3-D-Glc, MLG43) and cellulose (e.g. b-1,4-D-(Glc)3, CEL3). The mechanisms behind carbohydrate perception in plants are poorly characterized except for fungal chitin oligosaccharides (e.g. b-1,4-D-(GlcNAc)6, CHI6), which involve several receptor kinase proteins (RKs) with LysM-ECDs. Here, we describe the isolation and characterization of Arabidopsis thaliana mutants impaired in glycan perception (igp) that are defective in PTI activation mediated by MLG43 and CEL3, but not by CHI6. igp1–igp4 are altered in three RKs – AT1G56145 (IGP1), AT1G56130 (IGP2/IGP3) and AT1G56140 (IGP4) – with leucine-rich-repeat (LRR) and malectin (MAL) domains in their ECDs. igp1 harbors point mutation E906K and igp2 and igp3 harbor point mutation G773E in their kinase domains, whereas igp4 is a T-DNA insertional loss-of-function mutant. Notably, isothermal titration calorimetry (ITC) assays with purified ECDRKs of IGP1 and IGP3 showed that IGP1 binds with high affinity to CEL3 (with dissociation constant KD = 1.19 0.03 lM) and cellopentaose (KD = 1.40 0.01 lM), but not to MLG43, supporting its function as a plant PRR for cellulose-derived oligosaccharides. Our data suggest that these LRR-MAL RKs are components of a recognition mechanism for both cellulose- and MLG-derived oligosaccharide perception and downstream PTI activation in Arabidopsis.SIGrant PID-2021-126006OB-100 from the Spanish Ministry of Science and Innovation to AMThis work has also been financially supported by the ‘Severo Ochoa (SO) Programme for Centres of Excellence in R&D’ from the Agencia Estatal de Investigaci on (AEI) of Spain (grants SEV-2016-0672 (2017-2021) and CEX2020-000999-S (2022-2025) to the CBGP). In the frame of the SO program, HM and PF-C were supported with postdoctoral fellowships. MM-D, DJB and DR were recipients of PhD Fellows PRE2019-088120 and PRE2019-091276 (SEV-2016- 0672) from AEI, and IND2017/BIO-7800 from Madrid Regional Government, respectively. Research in the lab of JS was financially supported by the University of Lausanne, the European Research Council (ERC) (grant agreement no. 716358) and the Swiss National Science Foundation (grant no. 310030_204526)

    Cow's milk protein β-lactoglobulin confers resilience against allergy by targeting complexed iron into immune cells

    Get PDF
    Departamento de Biotecnología (INIA)Beta-lactoglobulin (BLG) is a bovine lipocalin in milk with an innate defense function. The circumstances under which BLG is associated with tolerance of or allergy to milk are not understood.Supported by the Austrian Science Fund FWF (grant SFB F4606-B28 ) and in part by Biomedical International R+D GmbH, Vienna, Austria, and by Bencard Allergie GmbH, Munich, Germany. S.M.A. was supported by a grant from the Egyptian Ministry of Higher Education .Peer reviewed18 Pág
    corecore