2,375 research outputs found

    On Redundancy Elimination Tolerant Scheduling Rules

    Full text link
    In (Ferrucci, Pacini and Sessa, 1995) an extended form of resolution, called Reduced SLD resolution (RSLD), is introduced. In essence, an RSLD derivation is an SLD derivation such that redundancy elimination from resolvents is performed after each rewriting step. It is intuitive that redundancy elimination may have positive effects on derivation process. However, undesiderable effects are also possible. In particular, as shown in this paper, program termination as well as completeness of loop checking mechanisms via a given selection rule may be lost. The study of such effects has led us to an analysis of selection rule basic concepts, so that we have found convenient to move the attention from rules of atom selection to rules of atom scheduling. A priority mechanism for atom scheduling is built, where a priority is assigned to each atom in a resolvent, and primary importance is given to the event of arrival of new atoms from the body of the applied clause at rewriting time. This new computational model proves able to address the study of redundancy elimination effects, giving at the same time interesting insights into general properties of selection rules. As a matter of fact, a class of scheduling rules, namely the specialisation independent ones, is defined in the paper by using not trivial semantic arguments. As a quite surprising result, specialisation independent scheduling rules turn out to coincide with a class of rules which have an immediate structural characterisation (named stack-queue rules). Then we prove that such scheduling rules are tolerant to redundancy elimination, in the sense that neither program termination nor completeness of equality loop check is lost passing from SLD to RSLD.Comment: 53 pages, to appear on TPL

    Methods and Models for Metabolic Assessment in Mice

    Get PDF
    The development of new therapies for the treatment of type 2 diabetes requires robust, reproducible and well validated in vivo experimental systems. Mice provide the most ideal animal model for studies of potential therapies. Unlike larger animals, mice have a short gestational period, are genetically similar, often give birth to many offspring at once and can be housed as multiple groups in a single cage. The mouse model has been extensively metabolically characterized using different tests. This report summarizes how these tests can be executed and how arising data are analyzed to confidently determine changes in insulin resistance and insulin secretion with high reproducibility. The main tests for metabolic assessment in the mouse reviewed here are the glucose clamp, the intravenous and the oral glucose tolerance tests. For all these experiments, including some commonly adopted variants, we describe: (i) their performance; (ii) their advantages and limitations; (iii) the empirical formulas and mathematical models implemented for the analysis of the data arising from the experimental procedures to obtain reliable measurements of peripheral insulin sensitivity and beta cell function. Finally, a list of previous applications of these methods and analytical techniques is provided to better comprehend their use and the evidences that these studies yielded
    corecore