2,375 research outputs found
On Redundancy Elimination Tolerant Scheduling Rules
In (Ferrucci, Pacini and Sessa, 1995) an extended form of resolution, called
Reduced SLD resolution (RSLD), is introduced. In essence, an RSLD derivation is
an SLD derivation such that redundancy elimination from resolvents is performed
after each rewriting step. It is intuitive that redundancy elimination may have
positive effects on derivation process. However, undesiderable effects are also
possible. In particular, as shown in this paper, program termination as well as
completeness of loop checking mechanisms via a given selection rule may be
lost. The study of such effects has led us to an analysis of selection rule
basic concepts, so that we have found convenient to move the attention from
rules of atom selection to rules of atom scheduling. A priority mechanism for
atom scheduling is built, where a priority is assigned to each atom in a
resolvent, and primary importance is given to the event of arrival of new atoms
from the body of the applied clause at rewriting time. This new computational
model proves able to address the study of redundancy elimination effects,
giving at the same time interesting insights into general properties of
selection rules. As a matter of fact, a class of scheduling rules, namely the
specialisation independent ones, is defined in the paper by using not trivial
semantic arguments. As a quite surprising result, specialisation independent
scheduling rules turn out to coincide with a class of rules which have an
immediate structural characterisation (named stack-queue rules). Then we prove
that such scheduling rules are tolerant to redundancy elimination, in the sense
that neither program termination nor completeness of equality loop check is
lost passing from SLD to RSLD.Comment: 53 pages, to appear on TPL
Methods and Models for Metabolic Assessment in Mice
The development of new therapies for the treatment of type 2 diabetes requires robust, reproducible and well validated in vivo experimental systems. Mice provide the most ideal animal model for studies of potential therapies. Unlike larger animals, mice have a short gestational period, are genetically similar, often give birth to many offspring at once and can be housed as multiple groups in a single cage. The mouse model has been extensively metabolically characterized using different tests. This report summarizes how these tests can be executed and how arising data are analyzed to confidently determine changes in insulin resistance and insulin secretion with high reproducibility. The main tests for metabolic assessment in the mouse reviewed here are the glucose clamp, the intravenous and the oral glucose tolerance tests. For all these experiments, including some commonly adopted variants, we describe: (i) their performance; (ii) their advantages and limitations; (iii) the empirical formulas and mathematical models implemented for the analysis of the data arising from the experimental procedures to obtain reliable measurements of peripheral insulin sensitivity and beta cell function. Finally, a list of previous applications of these methods and analytical techniques is provided to better comprehend their use and the evidences that these studies yielded
Palmitoylethanolamide is a disease-modifying agent in peripheral neuropathy : pain relief and neuroprotection share a PPAR-alpha-mediated mechanism
Peer reviewedPublisher PD
- …