3,258 research outputs found

    Meta-Learning by the Baldwin Effect

    Full text link
    The scope of the Baldwin effect was recently called into question by two papers that closely examined the seminal work of Hinton and Nowlan. To this date there has been no demonstration of its necessity in empirically challenging tasks. Here we show that the Baldwin effect is capable of evolving few-shot supervised and reinforcement learning mechanisms, by shaping the hyperparameters and the initial parameters of deep learning algorithms. Furthermore it can genetically accommodate strong learning biases on the same set of problems as a recent machine learning algorithm called MAML "Model Agnostic Meta-Learning" which uses second-order gradients instead of evolution to learn a set of reference parameters (initial weights) that can allow rapid adaptation to tasks sampled from a distribution. Whilst in simple cases MAML is more data efficient than the Baldwin effect, the Baldwin effect is more general in that it does not require gradients to be backpropagated to the reference parameters or hyperparameters, and permits effectively any number of gradient updates in the inner loop. The Baldwin effect learns strong learning dependent biases, rather than purely genetically accommodating fixed behaviours in a learning independent manner

    Social media, political polarization, and political disinformation: a review of the scientific literature

    Get PDF
    The following report is intended to provide an overview of the current state of the literature on the relationship between social media; political polarization; and political “disinformation,” a term used to encompass a wide range of types of information about politics found online, including “fake news,” rumors, deliberately factually incorrect information, inadvertently factually incorrect information, politically slanted information, and “hyperpartisan” news. The review of the literature is provided in six separate sections, each of which can be read individually but that cumulatively are intended to provide an overview of what is known — and unknown — about the relationship between social media, political polarization, and disinformation. The report concludes by identifying key gaps in our understanding of these phenomena and the data that are needed to address them

    Social media, political polarization, and political disinformation: a review of the scientific literature

    Get PDF
    The following report is intended to provide an overview of the current state of the literature on the relationship between social media; political polarization; and political “disinformation,” a term used to encompass a wide range of types of information about politics found online, including “fake news,” rumors, deliberately factually incorrect information, inadvertently factually incorrect information, politically slanted information, and “hyperpartisan” news. The review of the literature is provided in six separate sections, each of which can be read individually but that cumulatively are intended to provide an overview of what is known — and unknown — about the relationship between social media, political polarization, and disinformation. The report concludes by identifying key gaps in our understanding of these phenomena and the data that are needed to address them

    Mechanical properties of Graphene Nanoribbons

    Full text link
    Herein, we investigate the structural, electronic and mechanical properties of zigzag graphene nanoribbons upon the presence of stress applying Density Functional Theory within the GGA-PBE approximation. The uniaxial stress is applied along the periodic direction, allowing a unitary deformation in the range of +/- 0.02%. The mechanical properties show a linear-response within that range while the non-linear dependence is found for higher strain. The most relevant results indicate that Young's modulus is considerable higher than those determined for graphene and carbon nanotubes. The geometrical reconstruction of the C-C bonds at the edges hardness the nanostructure. Electronic structure features are not sensitive to strain in this linear elastic regime, being an additional promise for the using of carbon nanostructures in nano-electronic devices in the near future.Comment: 30 pages. J. Phys.: Condens. Matter (accepted

    The Samurai Project: verifying the consistency of black-hole-binary waveforms for gravitational-wave detection

    Get PDF
    We quantify the consistency of numerical-relativity black-hole-binary waveforms for use in gravitational-wave (GW) searches with current and planned ground-based detectors. We compare previously published results for the (ℓ=2,∣m∣=2)(\ell=2,| m | =2) mode of the gravitational waves from an equal-mass nonspinning binary, calculated by five numerical codes. We focus on the 1000M (about six orbits, or 12 GW cycles) before the peak of the GW amplitude and the subsequent ringdown. We find that the phase and amplitude agree within each code's uncertainty estimates. The mismatch between the (ℓ=2,∣m∣=2)(\ell=2,| m| =2) modes is better than 10−310^{-3} for binary masses above 60M⊙60 M_{\odot} with respect to the Enhanced LIGO detector noise curve, and for masses above 180M⊙180 M_{\odot} with respect to Advanced LIGO, Virgo and Advanced Virgo. Between the waveforms with the best agreement, the mismatch is below 2×10−42 \times 10^{-4}. We find that the waveforms would be indistinguishable in all ground-based detectors (and for the masses we consider) if detected with a signal-to-noise ratio of less than ≈14\approx14, or less than ≈25\approx25 in the best cases.Comment: 17 pages, 9 figures. Version accepted by PR

    Active and Passive Tuning of Ultranarrow Resonances in Polaritonic Nanoantennas

    Get PDF
    [EN] Optical nanoantennas are of great importance for photonic devices and spectroscopy due to their capability of squeezing light at the nanoscale and enhancing light-matter interactions. Among them, nanoantennas made of polar crystals supporting phonon polaritons (phononic nanoantennas) exhibit the highest quality factors. This is due to the low optical losses inherent in these materials, which, however, hinder the spectral tuning of the nanoantennas due to their dielectric nature. Here, active and passive tuning of ultranarrow resonances in phononic nanoantennas is realized over a wide spectral range (approximate to 35 cm(-1), being the resonance linewidth approximate to 9 cm(-1)), monitored by near-field nanoscopy. To do that, the local environment of a single nanoantenna made of hexagonal boron nitride is modified by placing it on different polar substrates, such as quartz and 4H-silicon carbide, or covering it with layers of a high-refractive-index van der Waals crystal (WSe2). Importantly, active tuning of the nanoantenna polaritonic resonances is demonstrated by placing it on top of a gated graphene monolayer in which the Fermi energy is varied. This work presents the realization of tunable polaritonic nanoantennas with ultranarrow resonances, which can find applications in active nanooptics and (bio)sensing.J.M.-S. acknowledges financial support from the Ramon y Cajal Program of the Government of Spain and FSE (Grant No. RYC2018-026196-I) and the Spanish Ministry of Science and Innovation (State Plan for Scientific and Technical Research and Innovation Grant Number PID2019-110308GA-I00). P.A.-G. acknowledges support from the European Research Council under starting Grant No. 715496, 2DNANOPTICA, and the Spanish Ministry of Science and Innovation (State Plan for Scientific and Technical Research and Innovation Grant Number PID2019-111156GB-I00). G.a.-P. and J.T.-G. acknowledge support through the Severo Ochoa Program from the Government of the Principality of Asturias (Grant nos. PA20-PF-BP19-053 and PA-18-PF-BP17-126, respectively). A.Y.N. acknowledges the Spanish Ministry of Science and Innovation (Grant Nos. MAT201788358-C3-3-R and PID2020-115221GB-C42) and the Basque Department of Education (Grant No. PIBA-2020-1-0014) J.H.E. acknowledges support for h-BN crystal growth from the National Science Foundation, Award Number CMMI-1538127. R.H. acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities (National Project Grant No. RTI2018-094830-B-100 and the Project Grant No. MDM-2016-0618 of the Marie de Maeztu Units of Excellence Program), the Basque Government (Grant No. IT1164-19), and the European Union's Horizon 2020 research and innovation programme under the Graphene Flagship (Grant Agreement Numbers 785219 and 881603, GrapheneCore2 and GrapheneCore3). I.D. acknowledges the Basque Government (Grant No. PRE_2019_2_0164). Work at MIT was partly supported through AFOSR Grant No. FA9550-16-1-0382, through the NSF QII-TAQS program (Grant No. 1936263), and the Gordon and Betty Moore Foundation EPiQS Initiative through Grant No. GBMF9643 to P.J.-H

    Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration

    Get PDF
    The Numerical-Relativity-Analytical-Relativity (NRAR) collaboration is a joint effort between members of the numerical relativity, analytical relativity and gravitational-wave data analysis communities. The goal of the NRAR collaboration is to produce numerical-relativity simulations of compact binaries and use them to develop accurate analytical templates for the LIGO/Virgo Collaboration to use in detecting gravitational-wave signals and extracting astrophysical information from them. We describe the results of the first stage of the NRAR project, which focused on producing an initial set of numerical waveforms from binary black holes with moderate mass ratios and spins, as well as one non-spinning binary configuration which has a mass ratio of 10. All of the numerical waveforms are analysed in a uniform and consistent manner, with numerical errors evaluated using an analysis code created by members of the NRAR collaboration. We compare previously-calibrated, non-precessing analytical waveforms, notably the effective-one-body (EOB) and phenomenological template families, to the newly-produced numerical waveforms. We find that when the binary's total mass is ~100-200 solar masses, current EOB and phenomenological models of spinning, non-precessing binary waveforms have overlaps above 99% (for advanced LIGO) with all of the non-precessing-binary numerical waveforms with mass ratios <= 4, when maximizing over binary parameters. This implies that the loss of event rate due to modelling error is below 3%. Moreover, the non-spinning EOB waveforms previously calibrated to five non-spinning waveforms with mass ratio smaller than 6 have overlaps above 99.7% with the numerical waveform with a mass ratio of 10, without even maximizing on the binary parameters.Comment: 51 pages, 10 figures; published versio
    • 

    corecore