57 research outputs found

    Non-Equilibrium Transport through a Kondo-Dot in a Magnetic Field: Perturbation Theory and Poor Man's Scaling

    Get PDF
    We consider electron transport through a quantum dot described by the Kondo model in the regime of large transport voltage V in the presence of a magnetic field B with max(V,B) >> T_K. The electric current I and the local magnetization M are found to be universal functions of V/T_K and B/T_K, where T_K is the equilibrium Kondo temperature. We present a generalization of the perturbative renormalization group to frequency dependent coupling functions, as necessitated by the structure of bare perturbation theory. We calculate I and M within a poor man's scaling approach and find excellent agreement with experiment.Comment: version accepted in PRL, notations changed, parts rewritten, figures modified, references and some corrections adde

    Nodal Quasiparticle Lifetimes in Cuprate Superconductors

    Full text link
    A new generation of angular-resolved photoemission spectroscopy (ARPES) measurements on the cuprate superconductors offer the promise of enhanced momentum and energy resolution. In particular, the energy and temperature dependence of the on-shell nodal (k_x=k_y) quasiparticle scattering rate can be studied. In the superconducting state, low temperature transport measurements suggest that one can describe nodal quasiparticles within the framework of a BCS d-wave model by including forward elastic scattering and spin-fluctuation inelastic scattering. Here, using this model, we calculate the temperature and frequency dependence of the on-shell nodal quasiparticle scattering rate in the superconducting state which determines the momentum width of the ARPES momentum distribution curves. For a zero-energy quasiparticle at the nodal momentum k_N, both the elastic and inelastic scattering rate show a sudden decrease as the temperature drops below Tc, reflecting the onset of the gap amplitude. At low temperatures the scattering rate decreases as T^3 and approaches a zero temperature value determined by the elastic impurity scattering. For T>T_c, we find a quasilinear dependence on T. At low reduced temperatures, the elastic scattering rate for the nodal quasiparticles exhibits a quasilinear increase at low energy which arises from elastic scattering processes. The inelastic spin-fluctuation scattering leads to a low energy omega^3 dependence which, for omega>~Delta_0, crosses over to a quasilinear behavior.Comment: 8 pages, 7 figures, minor revision

    Nonequilibrium Singlet-Triplet Kondo Effect in Carbon Nanotubes

    Get PDF
    The Kondo-effect is a many-body phenomenon arising due to conduction electrons scattering off a localized spin. Coherent spin-flip scattering off such a quantum impurity correlates the conduction electrons and at low temperature this leads to a zero-bias conductance anomaly. This has become a common signature in bias-spectroscopy of single-electron transistors, observed in GaAs quantum dots as well as in various single-molecule transistors. While the zero-bias Kondo effect is well established it remains uncertain to what extent Kondo correlations persist in non-equilibrium situations where inelastic processes induce decoherence. Here we report on a pronounced conductance peak observed at finite bias-voltage in a carbon nanotube quantum dot in the spin singlet ground state. We explain this finite-bias conductance anomaly by a nonequilibrium Kondo-effect involving excitations into a spin triplet state. Excellent agreement between calculated and measured nonlinear conductance is obtained, thus strongly supporting the correlated nature of this nonequilibrium resonance.Comment: 21 pages, 5 figure

    Magnetoresistance of YBa2Cu3O7 in the "cold spots" model

    Full text link
    We calculate the in-plane magnetoresistance Δρxx/ρxx\Delta\rho_{xx}/\rho_{xx} of YBa2_2Cu3_3O7_7 in a magnetic field applied perpendicular to the CuO2CuO_2 planes for the ``cold spots'' model. In this model, the electron relaxation time τ21/T2\tau_2\propto1/T^2 at small regions on the Fermi surface near the Brillouin zone diagonals is much longer than the relaxation time τ11/T\tau_1\propto1/T at the rest of the Fermi surface (TT is temperature). In qualitative agreement with the experiment, we find that Kohler's rule is strongly violated, but the ratio Δρxx/ρxxtan2θH\Delta\rho_{xx}/\rho_{xx}\tan^2\theta_H, where tanθH\tan\theta_H is the Hall angle, is approximately temperature-independent. We find the ratio is about 5.5, which is of the same order of magnitude as in the experiment.Comment: RevTeX, 4 pages, 6 figures. V.2: 2 references adde

    In silico discovery of blood cell macromolecular associations

    Get PDF
    Background Physical molecular interactions are the basis of intracellular signalling and gene regulatory networks, and comprehensive, accessible databases are needed for their discovery. Highly correlated transcripts may reflect important functional associations, but identification of such associations from primary data are cumbersome. We have constructed and adapted a user-friendly web application to discover and identify putative macromolecular associations in human peripheral blood based on significant correlations at the transcriptional level. Methods The blood transcriptome was characterized by quantification of 17,328 RNA species, including 341 mature microRNAs in 105 clinically well-characterized postmenopausal women. Intercorrelation of detected transcripts signal levels generated a matrix with > 150 million correlations recognizing the human blood RNA interactome. The correlations with calculated adjusted p-values were made easily accessible by a novel web application. Results We found that significant transcript correlations within the giant matrix reflect experimentally documented interactions involving select ubiquitous blood relevant transcription factors (CREB1, GATA1, and the glucocorticoid receptor (GR, NR3C1)). Their responsive genes recapitulated up to 91% of these as significant correlations, and were replicated in an independent cohort of 1204 individual blood samples from the Framingham Heart Study. Furthermore, experimentally documented mRNAs/miRNA associations were also reproduced in the matrix, and their predicted functional co-expression described. The blood transcript web application is available at http://app.uio.no/med/klinmed/correlation-browser/blood/index.php and works on all commonly used internet browsers. Conclusions Using in silico analyses and a novel web application, we found that correlated blood transcripts across 105 postmenopausal women reflected experimentally proven molecular associations. Furthermore, the associations were reproduced in a much larger and more heterogeneous cohort and should therefore be generally representative. The web application lends itself to be a useful hypothesis generating tool for identification of regulatory mechanisms in complex biological data sets.publishedVersio

    Kondo effect in quantum dots

    Full text link
    We review mechanisms of low-temperature electronic transport through a quantum dot weakly coupled to two conducting leads. Transport in this case is dominated by electron-electron interaction. At temperatures moderately lower than the charging energy of the dot, the linear conductance is suppressed by the Coulomb blockade. Upon further lowering of the temperature, however, the conductance may start to increase again due to the Kondo effect. We concentrate on lateral quantum dot systems and discuss the conductance in a broad temperature range, which includes the Kondo regime

    The Kondo Effect in Non-Equilibrium Quantum Dots: Perturbative Renormalization Group

    Get PDF
    While the properties of the Kondo model in equilibrium are very well understood, much less is known for Kondo systems out of equilibrium. We study the properties of a quantum dot in the Kondo regime, when a large bias voltage V and/or a large magnetic field B is applied. Using the perturbative renormalization group generalized to stationary nonequilibrium situations, we calculate renormalized couplings, keeping their important energy dependence. We show that in a magnetic field the spin occupation of the quantum dot is non-thermal, being controlled by V and B in a complex way to be calculated by solving a quantum Boltzmann equation. We find that the well-known suppression of the Kondo effect at finite V>>T_K (Kondo temperature) is caused by inelastic dephasing processes induced by the current through the dot. We calculate the corresponding decoherence rate, which serves to cut off the RG flow usually well inside the perturbative regime (with possible exceptions). As a consequence, the differential conductance, the local magnetization, the spin relaxation rates and the local spectral function may be calculated for large V,B >> T_K in a controlled way.Comment: 9 pages, invited paper for a special edition of JPSJ "Kondo Effect -- 40 Years after the Discovery", some typos correcte

    Orbital Kondo effect in carbon nanotubes

    Full text link
    Progress in the fabrication of nanometer-scale electronic devices is opening new opportunities to uncover the deepest aspects of the Kondo effect, one of the paradigmatic phenomena in the physics of strongly correlated electrons. Artificial single-impurity Kondo systems have been realized in various nanostructures, including semiconductor quantum dots, carbon nanotubes and individual molecules. The Kondo effect is usually regarded as a spin-related phenomenon, namely the coherent exchange of the spin between a localized state and a Fermi sea of electrons. In principle, however, the role of the spin could be replaced by other degrees of freedom, such as an orbital quantum number. Here we demonstrate that the unique electronic structure of carbon nanotubes enables the observation of a purely orbital Kondo effect. We use a magnetic field to tune spin-polarized states into orbital degeneracy and conclude that the orbital quantum number is conserved during tunneling. When orbital and spin degeneracies are simultaneously present, we observe a strongly enhanced Kondo effect, with a multiple splitting of the Kondo resonance at finite field and predicted to obey a so-called SU(4) symmetry.Comment: 26 pages, including 4+2 figure

    Spectral function of the Kondo model in high magnetic fields

    Get PDF
    Using a recently developed perturbative renormalization group (RG) scheme, we calculate analytically the spectral function of a Kondo impurity for either large frequencies w or large magnetic field B and arbitrary frequencies. For large w >> max[B,T_K] the spectral function decays as 1/ln^2[ w/T_K ] with prefactors which depend on the magnetization. The spin-resolved spectral function displays a pronounced peak at w=B with a characteristic asymmetry. In a detailed comparison with results from numerical renormalization group (NRG) and bare perturbation theory in next-to-leading logarithmic order, we show that our perturbative RG scheme is controlled by the small parameter 1/ln[ max(w,B)/T_K]. Furthermore, we assess the ability of the NRG to resolve structures at finite frequencies.Comment: 8 pages, version published in PRB, minor change

    Noisy Kondo impurities

    Full text link
    The anti-ferromagnetic coupling of a magnetic impurity carrying a spin with the conduction electrons spins of a host metal is the basic mechanism responsible for the increase of the resistance of an alloy such as Cu0.998{}_{0.998}Fe0.002{}_{0.002} at low temperature, as originally suggested by Kondo . This coupling has emerged as a very generic property of localized electronic states coupled to a continuum . The possibility to design artificial controllable magnetic impurities in nanoscopic conductors has opened a path to study this many body phenomenon in unusual situations as compared to the initial one and, in particular, in out of equilibrium situations. So far, measurements have focused on the average current. Here, we report on \textit{current fluctuations} (noise) measurements in artificial Kondo impurities made in carbon nanotube devices. We find a striking enhancement of the current noise within the Kondo resonance, in contradiction with simple non-interacting theories. Our findings provide a test bench for one of the most important many-body theories of condensed matter in out of equilibrium situations and shed light on the noise properties of highly conductive molecular devices.Comment: minor differences with published versio
    corecore