The Kondo-effect is a many-body phenomenon arising due to conduction
electrons scattering off a localized spin. Coherent spin-flip scattering off
such a quantum impurity correlates the conduction electrons and at low
temperature this leads to a zero-bias conductance anomaly. This has become a
common signature in bias-spectroscopy of single-electron transistors, observed
in GaAs quantum dots as well as in various single-molecule transistors. While
the zero-bias Kondo effect is well established it remains uncertain to what
extent Kondo correlations persist in non-equilibrium situations where inelastic
processes induce decoherence. Here we report on a pronounced conductance peak
observed at finite bias-voltage in a carbon nanotube quantum dot in the spin
singlet ground state. We explain this finite-bias conductance anomaly by a
nonequilibrium Kondo-effect involving excitations into a spin triplet state.
Excellent agreement between calculated and measured nonlinear conductance is
obtained, thus strongly supporting the correlated nature of this nonequilibrium
resonance.Comment: 21 pages, 5 figure