8 research outputs found

    Normalization in MALDI-TOF imaging datasets of proteins: practical considerations

    Get PDF
    Normalization is critically important for the proper interpretation of matrix-assisted laser desorption/ionization (MALDI) imaging datasets. The effects of the commonly used normalization techniques based on total ion count (TIC) or vector norm normalization are significant, and they are frequently beneficial. In certain cases, however, these normalization algorithms may produce misleading results and possibly lead to wrong conclusions, e.g. regarding to potential biomarker distributions. This is typical for tissues in which signals of prominent abundance are present in confined areas, such as insulin in the pancreas or β-amyloid peptides in the brain. In this work, we investigated whether normalization can be improved if dominant signals are excluded from the calculation. Because manual interaction with the data (e.g., defining the abundant signals) is not desired for routine analysis, we investigated two alternatives: normalization on the spectra noise level or on the median of signal intensities in the spectrum. Normalization on the median and the noise level was found to be significantly more robust against artifact generation compared to normalization on the TIC. Therefore, we propose to include these normalization methods in the standard “toolbox” of MALDI imaging for reliable results under conditions of automation

    MO-theoretisch konzipierte Kandidaten fĂĽr ein neuartiges Konzept einer lichtinduzierten Elektronenpumpe

    No full text
    MO-theory suggests 3 as a likely candidate for a newly designed conception to replace a given redox potential by a lower one with the aid of light

    Identification of multiple proteoforms biomarkers on clinical samples by routine Top-Down approaches

    No full text
    International audienceTop-Down approaches have an extremely high biological relevance, especially when it comes to biomarker discovery, but the necessary pre-fractionation constraints are not easily compatible with the robustness requirements and the size of clinical sample cohorts. We have demonstrated that intact protein profiling studies could be run on UHR-Q-ToF with limited pre-fractionation (Schmit et al., 2017) [1]. The dataset presented herein is an extension of this research. Proteoforms known to play a role in the pathophysiology process of Alzheimer's disease were identified as candidate biomarkers. In this article, mass spectrometry performance of these candidates are demonstrated
    corecore