23 research outputs found

    Large-scale screening of HCMV-seropositive blood donors indicates that HCMV effectively escapes from antibodies by cell-associated spread

    Get PDF
    Immunoglobulins are only moderately effective for the treatment of human cytomegalovirus (HCMV) infections, possibly due to ineffectiveness against cell-associated virus spread. To overcome this limitation, we aimed to identify individuals with exceptional antibodies in their plasma that can efficiently block the cell-associated spread of HCMV. A Gaussia luciferase-secreting mutant of the cell-associated HCMV strain Merlin was generated, and luciferase activity evaluated as a readout for the extent of cell-associated focal spread. This reporter virus-based assay was then applied to screen plasma samples from 8400 HCMV-seropositive individuals for their inhibitory effect, including direct-acting antiviral drugs as positive controls. None of the plasmas reduced virus spread to the level of these controls. Even the top-scoring samples that partially reduced luciferase activity in the screening assay failed to inhibit focal growth when reevaluated with a more accurate, immunofluorescence-based assay. Selected sera with high neutralizing capacity against free viruses were analyzed separately, and none of them prevented the focal spread of three recent clinical HCMV isolates nor reduced the number of particles transmitted, as demonstrated with a fluorescent Merlin mutant. We concluded that donors with cell-to-cell-spread-inhibiting plasma are nonexistent or extremely rare, emphasizing cell-associated spread as a highly efficient immune escape mechanism of HCM

    Role of envelope glycoprotein complexes in cell-associated spread of human cytomegalovirus

    Get PDF
    The role of viral envelope glycoproteins, particularly the accessory proteins of trimeric and pentameric gH/gL-complexes, in cell-associated spread of human cytomegalovirus (HCMV) is unclear. We aimed to investigate their contribution in the context of HCMV variants that grow in a strictly cell-associated manner. In the genome of Merlin pAL1502, the glycoproteins gB, gH, gL, gM, and gN were deleted by introducing stop codons, and the mutants were analyzed for viral growth. Merlin and recent HCMV isolates were compared by quantitative immunoblotting for expression of accessory proteins of the trimeric and pentameric gH/gL-complexes, gO and pUL128. Isolates were treated with siRNAs against gO and pUL128 and analyzed regarding focal growth and release of infectious virus. All five tested glycoproteins were essential for growth of Merlin pAL1502. Compared with this model virus, higher gO levels were measured in recent isolates of HCMV, and its knockdown decreased viral growth. Knockdown of pUL128 abrogated the strict cell-association and led to release of infectivity, which allowed cell-free transfer to epithelial cells where the virus grew again strictly cell-associated. We conclude that both trimer and pentamer contribute to cell-associated spread of recent clinical HCMV isolates and downregulation of pentamer can release infectious virus into the supernatant

    Effects of eight neuropsychiatric copy number variants on human brain structure

    Get PDF
    Many copy number variants (CNVs) confer risk for the same range of neurodevelopmental symptoms and psychiatric conditions including autism and schizophrenia. Yet, to date neuroimaging studies have typically been carried out one mutation at a time, showing that CNVs have large effects on brain anatomy. Here, we aimed to characterize and quantify the distinct brain morphometry effects and latent dimensions across 8 neuropsychiatric CNVs. We analyzed T1-weighted MRI data from clinically and non-clinically ascertained CNV carriers (deletion/duplication) at the 1q21.1 (n = 39/28), 16p11.2 (n = 87/78), 22q11.2 (n = 75/30), and 15q11.2 (n = 72/76) loci as well as 1296 non-carriers (controls). Case-control contrasts of all examined genomic loci demonstrated effects on brain anatomy, with deletions and duplications showing mirror effects at the global and regional levels. Although CNVs mainly showed distinct brain patterns, principal component analysis (PCA) loaded subsets of CNVs on two latent brain dimensions, which explained 32 and 29% of the variance of the 8 Cohen’s d maps. The cingulate gyrus, insula, supplementary motor cortex, and cerebellum were identified by PCA and multi-view pattern learning as top regions contributing to latent dimension shared across subsets of CNVs. The large proportion of distinct CNV effects on brain morphology may explain the small neuroimaging effect sizes reported in polygenic psychiatric conditions. Nevertheless, latent gene brain morphology dimensions will help subgroup the rapidly expanding landscape of neuropsychiatric variants and dissect the heterogeneity of idiopathic conditions

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    The effect of cytosorb® application on kidney recovery in critically ill patients with severe rhabdomyolysis: a propensity score matching analysis

    No full text
    AbstractSevere rhabdomyolysis frequently results in acute kidney injury (AKI) due to myoglobin accumulation with the need of kidney replacement therapy (KRT). The present study investigated whether the application of Cytosorb® (CS) led to an increased rate of kidney recovery in patients with KRT due to severe rhabdomyolysis. Adult patients with a myoglobin-concentration >10,000 ng/ml and KRT were included from 2014 to 2021. Exclusion criteria were chronic kidney disease and CS-treatment before study inclusion. Groups 1 and 2 were defined as KRT with and without CS, respectively. The primary outcome parameter was independence from KRT after 30 days. Propensity score (PS) matching was performed (predictors: myoglobin, SAPS-II, and age), and the chi2-test was used. 35 pairings could be matched (mean age: 57 vs. 56 years; mean myoglobin: 27,218 vs. 26,872 ng/ml; mean SAPS-II: 77 vs. 76). The probability of kidney recovery was significantly (p = .04) higher in group 1 (31.4 vs. 11.4%, mean difference: 20.0%, odds ratio (OR): 3.6). Considering patients who survived 30 days, kidney recovery was also significantly (p = .03) higher in patients treated with CS (61.1 vs. 23.5%, mean difference: 37.6%, OR: 5.1). In conclusion, the use of CS might positively affect renal recovery in patients with severe rhabdomyolysis. A prospective randomized controlled trial is needed to confirm this hypothesis

    Changes in Skin and Nasal Microbiome and Staphylococcal Species Following Treatment of Atopic Dermatitis with Dupilumab

    No full text
    Investigation of changes in the skin microbiome following treatment of atopic dermatitis (AD) with dupilumab may provide valuable insights into the skin microbiome as a therapeutic target. The aim of this study is to assess changes in the AD skin microbiome following treatment of AD with dupilumab (n = 27). E-swabs were collected from nose, lesional, and nonlesional skin before and after 16 weeks of dupilumab therapy, and the microbiome was analyzed by 16S rRNA and tuf gene sequencing. Data for 17 patients with milder disease receiving treatment with non-targeted therapies are also presented. The results show that both groups experienced clinical improvement (p < 0.001) following dupilumab therapy and that Shannon diversity increased and bacterial community structure changed. The relative abundance of the genus Staphylococcus (S.) and S. aureus decreased, while that of S. epidermidis and S. hominis increased. No significant changes were observed for patients receiving non-targeted treatments. The increases in S. epidermidis and S. hominis and the decrease in S. aureus correlated with clinical improvement. Furthermore, changes in S. hominis and S. epidermidis correlated inversely with S. aureus. In conclusion, treatment with dupilumab significantly changed the skin microbiome and decreased S. aureus. Our results suggest a favorable role of commensal staphylococci in AD

    Temporal and Spatial Variation of the Skin-Associated Bacteria from Healthy Participants and Atopic Dermatitis Patients

    No full text
    Several factors have been shown to influence the composition of the bacterial communities inhabiting healthy skin, with variation between different individuals, differing skin depths, and body locations (spatial-temporal variation). Atopic dermatitis (AD) is a chronic skin disease also affecting the skin-associated bacterial communities. While the effects of AD have been studied on these processes individually, few have considered how AD disrupts the spatial-temporal variation of the skin bacteria as a whole (i.e., considered these processes simultaneously). Here, we characterized the skin-associated bacterial communities of healthy volunteers and lesional and nonlesional skin of AD patients by metabarcoding the universal V3-V4 16S rRNA region from tape strip skin samples. We quantified the spatial-temporal variation (interindividual variation, differing skin depths, multiple time points) of the skin-associated bacteria within healthy controls and AD patients, including the relative change induced by AD in each. Interindividual variation correlated with the bacterial community far more strongly than any other factors followed by skin depth and then AD status. There was no significant temporal variation found within either AD patients or healthy controls. The bacterial community was found to vary markedly according to AD severity, and between patients without and with filaggrin mutations. Therefore, future studies may benefit from sampling subsurface epidermal communities and considering AD severity and the host genome in understanding the role of the skin bacterial community within AD pathogenesis rather than considering AD as a presence-absence disorder. IMPORTANCE The bacteria associated with human skin may influence skin barrier function and the immune response. Previous studies have attempted to understand the factors that regulate the skin bacteria, characterizing the spatial-temporal variation of the skin bacteria within unaffected skin. Here, we quantified the effect of AD on the skin bacteria on multiple spatial-temporal factors simultaneously. Although significant community variation between healthy controls and AD patients was observed, the effects of AD on the overall bacterial community were relatively low compared to other measured factors. Results here suggest that changes in specific taxa rather than wholesale changes in the skin bacteria are associated with mild to moderate AD. Further studies would benefit from incorporating the complexity of AD into models to better understand the condition, including AD severity and the host genome, alongside microbial composition

    Staphylococcal Communities on Skin Are Associated with Atopic Dermatitis and Disease Severity

    No full text
    The skin microbiota of atopic dermatitis (AD) patients is characterized by increased Staphylococcus aureus colonization, which exacerbates disease symptoms and has been linked to reduced bacterial diversity. Skin bacterial communities in AD patients have mostly been described at family and genus levels, while species-level characterization has been limited. In this study, we investigated the role of the bacteria belonging to the Staphylococcus genus using targeted sequencing of the tuf gene with genus-specific primers. We compared staphylococcal communities on lesional and non-lesional skin of AD patients, as well as AD patients with healthy controls, and determined the absolute abundance of bacteria present at each site. We observed that the staphylococcal community, bacterial alpha diversity, and bacterial densities were similar on lesional and non-lesional skin, whereas AD severity was associated with significant changes in staphylococcal composition. Increased S. aureus, Staphylococcus capitis, and Staphylococcus lugdunensis abundances were correlated with increased severity. Conversely, Staphylococcus hominis abundance was negatively correlated with severity. Furthermore, S. hominis relative abundance was reduced on AD skin compared to healthy skin. In conclusion, various staphylococcal species appear to be important for skin health
    corecore