137 research outputs found

    Screening of antioxidant properties of the apple juice using the front-face synchronous fluorescence and chemometrics

    Get PDF
    Fluorescence spectroscopy is gaining increasing attention in food analysis due to its higher sensitivity and selectivity as compared to other spectroscopic techniques. Synchronous scanning fluorescence technique is particularly useful in studies of multi-fluorophoric food samples, providing a further improvement of selectivity by reduction in the spectral overlapping and suppressing light-scattering interferences. Presently, we study the feasibility of the prediction of the total phenolics, flavonoids, and antioxidant capacity using front-face synchronous fluorescence spectra of apple juices. Commercial apple juices from different product ranges were studied. Principal component analysis (PCA) applied to the unfolded synchronous fluorescence spectra was used to compare the fluorescence of the entire sample set. The regression analysis was performed using partial least squares (PLS1 and PLS2) methods on the unfolded total synchronous and on the single-offset synchronous fluorescence spectra. The best calibration models for all of the studied parameters were obtained using the PLS1 method for the single-offset synchronous spectra. The models for the prediction of the total flavonoid content had the best performance; the optimal model was obtained for the analysis of the synchronous fluorescence spectra at Delta lambda = 110 nm (R (2) = 0.870, residual predictive deviation (RPD) = 2.7). The optimal calibration models for the prediction of the total phenolic content (Delta lambda = 80 nm, R (2) = 0.766, RPD = 2.0) and the total antioxidant capacity (Delta lambda = 70 nm, R (2) = 0.787, RPD = 2.1) had only an approximate predictive ability. These results demonstrate that synchronous fluorescence could be a useful tool in fast semi-quantitative screening for the antioxidant properties of the apple juices.info:eu-repo/semantics/publishedVersio

    Luminescent iridium complexes for detection of molybdate

    Get PDF
    Reactions of [Ir(CŸN)2Cl]2 [HCŸN = 2-(3-R-phenyl)pyridine, 2-(3-R-phenylpyrazole) R = H, Me] with Me2-phencat give luminescent complexes [Ir(CŸN)2(Me2-phencat)][PF6] (Me2-2a, b, c)[PF6]. Deprotection of the methoxy groups with BBr3 is problematic as simultaneous bromination of the cyclometallated phenyl groups occurs. However, deprotection of Me2-phencat with BBr3 followed by complexation with [Ir(CŸN)2Cl]2 gives luminescent complexes [Ir(CŸN)2(H2-phencat)][PF6] (H2-3a, c)[PF6], which are luminescent sensors for molybdate

    Using Magnetically Responsive Tea Waste to Remove Lead in Waters under Environmentally Relevant Conditions

    Get PDF
    We report the use of a simple yet highly effective magnetite-waste tea composite to remove lead(II) (Pb[superscript 2+]) ions from water. Magnetite-waste tea composites were dispersed in four different types of water–deionized (DI), artificial rainwater, artificial groundwater and artificial freshwater–that mimic actual environmental conditions. The water samples had varying initial concentrations (0.16–5.55 ppm) of Pb[superscript 2+] ions and were mixed with the magnetite-waste tea composite for at least 24 hours to allow adsorption of the Pb[superscript 2+] ions to reach equilibrium. The magnetite-waste tea composites were stable in all the water samples for at least 3 months and could be easily removed from the aqueous media via the use of permanent magnets. We detected no significant leaching of iron (Fe) ions into the water from the magnetite-waste tea composites. The percentage of Pb adsorbed onto the magnetite-waste tea composite ranged from ~70% to 100%; the composites were as effective as activated carbon (AC) in removing the Pb[superscript 2+] ions from water, depending on the initial Pb concentration. Our prepared magnetite-waste tea composites show promise as a green, inexpensive and highly effective sorbent for removal of Pb in water under environmentally realistic conditions.SUTD-MIT International Design Center (Research Grant IDG11200105/IDD11200109)Singapore-MIT Allianc
    corecore