149 research outputs found
Higher incidence of falls in winter among older people in Hong Kong
Purpose: This study aims at determining whether there is a seasonal pattern of falls among older people in Hong Kong and exploring the possible mechanisms underlying the seasonal pattern. Methods: The falls data were obtained from a 1-year prospective study conducted in 200-2007 which includes all the older people aged 60 years or more with a fall presenting to Accident and Emergency Department of a regional hospital in Hong Kong. The occurrence of falls among the 12 months was recorded and was used to correlate with weather data, including air temperature, relative humidity, and rainfall, in each month during the study period. Analyses were also carried out to examine if there was any signification association between occurrence of falls in four seasons and various factors, including age, gender and living arrangement of the fallers, location of falls, and predisposing factors for their falls. Results: There was a peak in occurrence of falls among the older people during winter. A significant correlation was found between a higher number of falls and lower air temperature and lower relative humidity. Age, gender, and location of falls for the fallers were not associated with the peak seasons (winter and autumn) and nonpeak seasons (spring and summer). Significantly larger proportion of falls occurred among people living in old age home during the peak season compared with the nonpeak season. Higher proportion of fallers during the peak season had lower limbs weakness as compared with that in nonpeak season. Multivariate logistic regression showed that only living arrangement and risky behavior were significantly associated with fall occurrence in peak season. Conclusion: A higher incidence of falls in winter among older people in Hong Kong was observed and possible mechanisms contributing to this seasonal pattern were explored. Further studies on intervention to minimize its impact on risk of falling among older people are indicated. Copyright © 2011, Asia Pacific League of Clinical Gerontology & Geriatrics. Published by Elsevier Taiwan LLC. All rights reserved.link_to_subscribed_fulltex
Inpatient emergencies encountered by an infectious disease consultative service
The spectrum of infections disease (ID) emergencies in hospitalized patients was assessed in a prospective study of 3,626 inpatient ID consultations in a 1,350-bed teaching hospital. ID emergencies, defined by a need or anticipated need for advanced life support or by irreversible organ damage leading to permanent functional loss, were encountered in 175 patients. Infections of the central nervous system (26.3%), cardiovascular system (14.9%), alimentary system (13.1%), and lower respiratory tract (7.4%) and adverse reactions to antimicrobial agents (7.4%) were most common. In 18.9% of the cases, the referring clinicians were unaware of the emergency at the time of referral. Drug reactions (46.1%), severe alimentary and peritoneal infections (32.0%), upper respiratory tract infections (28.6%), and skin and soft-tissue infections (27.3%) were most frequently missed. The emergency ID conditions were not recognized because they had an atypical presentation (51.5%), were not commonly seen in the referring specialty (24.2%), were due to rare organisms (15.2%), or had unusual anatomical sites of involvement (9.1%). A close liaison between clinicians and the ID team is crucial for recognition of ID emergencies at their early stages so that appropriate investigations and management can be instituted expediently, before the occurrence of irreversible damage.published_or_final_versio
Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3
published_or_final_versio
Hippocampal Volume Reduction in Congenital Central Hypoventilation Syndrome
Children with congenital central hypoventilation syndrome (CCHS), a genetic disorder characterized by diminished drive to breathe during sleep and impaired CO2 sensitivity, show brain structural and functional changes on magnetic resonance imaging (MRI) scans, with impaired responses in specific hippocampal regions, suggesting localized injury
Identification of serum biomarkers of hepatocarcinoma through liquid chromatography/mass spectrometry-based metabonomic method
Late diagnosis of hepatocarcinoma (HCC) is one of the most primary factors for the poor survival of patients. Thereby, identification of sensitive and specific biomarkers for HCC early diagnosis is of great importance in biological medicine to date. In the present study, serum metabolites of the HCC patients and healthy controls were investigated using the improved liquid chromatography–mass spectrometry (LC/MS). A wavelet-based method was utilized to find and align peaks of LC–MS. The characteristic peaks were selected by performing a two-sample t test statistics (p value <0.05). Clustering analysis based on principal component analysis showed a clear separation between HCC patients and healthy individuals. The serum metabolite, namely 1-methyladenosine, was identified as the characteristic metabolite for HCC. Moreover, receiver–operator curves were calculated with 1-methyladenosine and/or alpha fetal protein (AFP). The higher area under curve value was achieved in 1-methyladenosine group than AFP group (0.802 vs. 0.592), and the diagnostic model combining 1-methyladenosine with AFP exhibited significant improved sensitivity, which could identify those patients who missed the diagnosis of HCC by determining serum AFP alone. Overall, these results suggested that LC/MS-based metabonomic study is a potent and promising strategy for identifying novel biomarkers of HCC
Enhanced effects of cigarette smoke extract on inflammatory cytokine expression in IL-1β-activated human mast cells were inhibited by Baicalein via regulation of the NF-κB pathway
Background: Human mast cells are capable of a wide variety of inflammatory responses and play a vital role in the pathogenesis of inflammatory diseases such as allergy, asthma, and atherosclerosis. We have reported that cigarette smoke extract (CSE) significantly increased IL-6 and IL-8 production in IL-1β-activated human mast cell line (HMC-1). Baicalein (BAI) has anti-inflammatory properties and inhibits IL-1β- and TNF-α-induced inflammatory cytokine production from HMC-1. The goal of the present study was to examine the effect of BAI on IL-6 and IL-8 production from CSE-treated and IL-1β-activated HMC-1.Methods: Main-stream (Ms) and Side-stream (Ss) cigarette smoke were collected onto fiber filters and extracted in RPMI-1640 medium. Two ml of HMC-1 at 1 × 10 6 cells/mL were cultured with CSE in the presence or absence of IL-1β (10 ng/mL) for 24 hrs. A group of HMC-1 cells stimulated with both IL-1β (10 ng/ml) and CSE was also treated with BAI. The expression of IL-6 and IL-8 was assessed by ELISA and RT-PCR. NF-κB activation was measured by electrophoretic mobility shift assay (EMSA) and IκBα degradation by Western blot.Results: Both Ms and Ss CSE significantly increased IL-6 and IL-8 production (p \u3c 0.001) in IL-1β-activated HMC-1. CSE increased NF-κB activation and decreased cytoplasmic IκBα proteins in IL-1β-activated HMC-1. BAI (1.8 to 30 μM) significantly inhibited production of IL-6 and IL-8 in a dose-dependent manner in IL-1β-activated HMC-1 with the optimal inhibition concentration at 30 μM, which also significantly inhibited the enhancing effect of CSE on IL-6 and IL-8 production in IL-1β-activated HMC-1. BAI inhibited NF-κB activation and increased cytoplasmic IκBα proteins in CSE-treated and IL-1β-activated HMC-1.Conclusions: Our results showed that CSE significantly increased inflammatory cytokines IL-6 and IL-8 production in IL-1β-activated HMC-1. It may partially explain why cigarette smoke contributes to lung and cardiovascular diseases. BAI inhibited the production of inflammatory cytokines through inhibition of NF-κB activation and IκBα phosphorylation and degradation. This inhibitory effect of BAI on the expression of inflammatory cytokines induced by CSE suggests its usefulness in the development of novel anti-inflammatory therapies
Suppression of adenine nucleotide translocase-2 by vector-based siRNA in human breast cancer cells induces apoptosis and inhibits tumor growth in vitro and in vivo
INTRODUCTION: Adenine nucleotide translocator (ANT) 2 is highly expressed in proliferative cells, and ANT2 induction in cancer cells is known to be directly associated with glycolytic metabolisms and carcinogenesis. In addition, ANT2 repression results in the growth arrest of human cells, implying that ANT2 is a candidate for cancer therapy based on molecular targeting. METHODS: We utilized an ANT2-specific RNA interference approach to inhibit ANT2 expression for evaluating its antitumor effect in vitro and in vivo. Specifically, to investigate the therapeutic potential of ANT2 repression, we used a DNA vector-based RNA interference approach by expressing shRNA to knockdown ANT2 in breast cancer cell lines overexpressing ANT2. RESULTS: ANT2 shRNA treatment in breast cancer cell line MDA-MB-231 repressed cell growth as well as proliferation. In addition, cell cycle arrest, ATP depletion and apoptotic cell death characterized by the potential disruption of mitochondrial membrane were observed from the ANT2 shRNA-treated breast cancer cells. Apoptotic breast cancer cells transfected with ANT2 shRNA also induced a cytotoxic bystander effect that generates necrotic cell death to the neighboring cells. The intracellular levels of TNFalpha and TNF-receptor I were increased in ANT2 shRNA transfected cells and the bystander effect was partly blocked by anti-TNFalpha antibody. Ultimately, ANT2 shRNA effectively inhibited tumor growth in vivo. CONCLUSION: These results suggest that vector-based ANT2 RNA interference could be an efficient molecular therapeutic method for breast cancer with high expression of ANT2.This work was supported in part by the grants from the Cancer
Research Center, and the Korean Science & Engineering Foundation through the Tumor Immunity Medical Research Center at Seoul National University College of Medicine
Minichromosome Maintenance 2 Bound with Retroviral Gp70 Is Localized to Cytoplasm and Enhances DNA-Damage-Induced Apoptosis
The interaction of viral proteins with host-cellular proteins elicits the activation of cellular signal transduction pathways and possibly leads to viral pathogenesis as well as cellular biological events. Apoptotic signals induced by DNA-damage are remarkably up-regulated by Friend leukemia virus (FLV) exclusively in C3H hosts; however, the mechanisms underlying the apoptosis enhancement and host-specificity are unknown. Here, we show that C3H mouse-derived hematopoietic cells originally express higher levels of the minichromosome maintenance (MCM) 2 protein than BALB/c- or C57BL/6-deriverd cells, and undergo more frequent apoptosis following doxorubicin-induced DNA-damage in the presence of the FLV envelope protein gp70. Dual transfection with gp70/Mcm2 reproduced doxorubicin-induced apoptosis even in BALB/c-derived 3T3 cells. Immunoprecipitation assays using various deletion mutants of MCM2 revealed that gp70 bound to the nuclear localization signal (NLS) 1 (amino acids 18–24) of MCM2, interfered with the function of NLS2 (amino acids 132–152), and suppressed the normal nuclear-import of MCM2. Cytoplasmic MCM2 reduced the activity of protein phosphatase 2A (PP2A) leading to the subsequent hyperphosphorylation of DNA-dependent protein kinase (DNA-PK). Phosphorylated DNA-PK exhibited elevated kinase activity to phosphorylate P53, thereby up-regulating p53-dependent apoptosis. An apoptosis-enhancing domain was identified in the C-terminal portion (amino acids 703–904) of MCM2. Furthermore, simultaneous treatment with FLV and doxorubicin extended the survival of SCID mice bearing 8047 leukemia cells expressing high levels of MCM2. Thus, depending on its subcellular localization, MCM2 plays different roles. It participates in DNA replication in the nucleus as shown previously, and enhances apoptosis in the cytoplasm
Recommended from our members
Northern Eurasia Future Initiative (NEFI): facing the challenges and pathways of global change in the 21st century
During the past several decades, the Earth system has changed significantly, especially across Northern Eurasia. Changes in the socio-economic conditions of the larger countries in the region have also resulted in a variety of regional environmental changes that can
have global consequences. The Northern Eurasia Future Initiative (NEFI) has been designed as an essential continuation of the Northern Eurasia Earth Science
Partnership Initiative (NEESPI), which was launched in 2004. NEESPI sought to elucidate all aspects of ongoing environmental change, to inform societies and, thus, to
better prepare societies for future developments. A key principle of NEFI is that these developments must now be secured through science-based strategies co-designed
with regional decision makers to lead their societies to prosperity in the face of environmental and institutional challenges. NEESPI scientific research, data, and
models have created a solid knowledge base to support the NEFI program. This paper presents the NEFI research vision consensus based on that knowledge. It provides the reader with samples of recent accomplishments in regional studies and formulates new NEFI science questions. To address these questions, nine research foci are identified and their selections are briefly justified. These foci include: warming of the Arctic; changing frequency, pattern, and intensity of extreme and inclement environmental conditions; retreat of the cryosphere; changes in terrestrial water cycles; changes in the biosphere; pressures on land-use; changes in infrastructure; societal actions in response to environmental change; and quantification of Northern Eurasia's role in the global Earth system. Powerful feedbacks between the Earth and human systems in Northern Eurasia (e.g., mega-fires, droughts, depletion of the cryosphere essential for water supply, retreat of sea ice) result from past and current human activities (e.g., large scale water withdrawals, land use and governance change) and
potentially restrict or provide new opportunities for future human activities. Therefore, we propose that Integrated Assessment Models are needed as the final stage of global
change assessment. The overarching goal of this NEFI modeling effort will enable evaluation of economic decisions in response to changing environmental conditions and justification of mitigation and adaptation efforts
- …