7 research outputs found

    A High Signal-to-Noise Ratio Composite Spectrum of Gamma-ray Burst Afterglows

    Full text link
    We present a composite spectrum of 60 long duration gamma-ray burst (GRB) afterglows with redshifts in the range 0.35<z<6.7 observed with low resolution optical spectra. The composite spectrum covers the wavelength range 700-6600 A in the rest frame and has a mean signal-to-noise ratio of 150 per 1 A pixel and reaches a maximum of ~300 in the range 2500-3500 A. Equivalent widths are measured from metal absorption lines from the Lya line to ~5200 A, and associated metal and hydrogen lines are identified between the Lyman break and Lya line. The average transmission within the Lyman forest is consistent with that found along quasar lines of sight. We find a temporal variation in fine structure lines when dividing the sample into bursts observed within 2 hours from their trigger and those observed later. Other lines in the predominantly neutral gas show variations too, but this is most likely a random effect caused by weighting of individual strong absorption lines and which mimics a temporal variation. Bursts characterized with high or low prompt GRB energy release produce afterglows with similar absorption line strengths, and likewise for bursts with bright or faint optical afterglows. Bursts defined as dark from their optical to X-ray spectral index have stronger absorption lines relative to the optically bright bursts. The composite spectrum has strong CaII and MgII absorption lines as commonly found in dusty galaxies, however, we find no evidence for dust or a significant molecular content based on the non-detection of diffuse interstellar bands. Compared to starburst galaxy spectra, the GRB composite has much stronger fine structure lines, while metal absorption lines are weaker.Comment: Accepted for publication in ApJ, 24 page

    A statistical study of gamma-ray burst afterglows measured by the Swift Ultraviolet Optical Telescope

    Get PDF
    We present the first statistical analysis of 27 Ultraviolet Optical Telescope (UVOT) optical/ultraviolet light curves of gamma-ray burst (GRB) afterglows. We have found, through analysis of the light curves in the observer's frame, that a significant fraction rise in the first 500 s after the GRB trigger, all light curves decay after 500 s, typically as a power law with a relatively narrow distribution of decay indices, and the brightest optical afterglows tend to decay the quickest. We find that the rise could be either produced physically by the start of the forward shock, when the jet begins to plough into the external medium, or geometrically where an off-axis observer sees a rising light curve as an increasing amount of emission enters the observers line of sight, which occurs as the jet slows. We find that at 99.8 per cent confidence, there is a correlation, in the observed frame, between the apparent magnitude of the light curves at 400 s and the rate of decay after 500 s. However, in the rest frame, a Spearman rank test shows only a weak correlation of low statistical significance between luminosity and decay rate. A correlation should be expected if the afterglows were produced by off-axis jets, suggesting that the jet is viewed from within the half-opening angle θ or within a core of a uniform energy density θc. We also produced logarithmic luminosity distributions for three rest-frame epochs. We find no evidence for bimodality in any of the distributions. Finally, we compare our sample of UVOT light curves with the X-ray Telescope (XRT) light-curve canonical model. The range in decay indices seen in UVOT light curves at any epoch is most similar to the range in decay of the shallow decay segment of the XRT canonical model. However, in the XRT canonical model, there is no indication of the rising behaviour observed in the UVOT light curves

    LEFT—A web-based tool for the remote measurement and estimation of ecological value across global landscapes

    No full text
    1.The overall aim in the development of the Local Ecological Footprinting tool (LEFT) was to design a web-based tool that could provide quickly obtained quantitative data to assist landowners when making land-use change decisions and to help them minimise the environmental impact and determine areas of greatest ecological risk in their operations. 2.LEFT works for almost any region in the world and uses freely available satellite imagery, biotic and abiotic data from existing global databases, models and algorithms to deliver a customised report for a selected area within one hour of job submission. 3.Biotic data automatically obtained for a selected landscape includes terrestrial vertebrate and plant species occurrence data, information on their conservation status and remotely sensed vegetation productivity. Abiotic information obtained includes temperature, precipitation, water availability, insolation, topography, elevation, distribution of urban infrastructure, and location of wetlands. 4.The tool performs a number of analyses on the biotic and abiotic data to produce maps for the selected area at a 30m resolution depicting land cover type, numbers of globally threatened terrestrial vertebrate and plant species, beta-diversity of terrestrial vertebrates and plants, habitat intactness, wetland habitat connectivity, numbers of migratory species and vegetation resilience. Results are also aggregated to produce a summary map demonstrating areas of high and low ecological value across the selected area. 5.LEFT has been designed to be intuitive to use, requiring no specialised software or user expertise. Input is extremely easy and requires the user to highlight the area of interest on a map or using grid co-ordinates. Output is delivered via the web application and comprises a customised PDF containing the maps and a zip file of GIS data for the area requested. Users may run an unlimited number of LEFT analyses and download reports free of charge. In addition to the free tool described in this paper, there is also a paid service: individual LEFT analyses can be upgraded for a charge to allow access to the geographically subsetted datasets generated for each report. This data is supplied as a zip file containing raster datasets for the layers in the LEFT analysis in GeoTIFF format. These can be opened and queried in a Geographical Information System (GIS) software package

    A short gamma-ray burst apparently associated with an elliptical galaxy at redshift z = 0.225.

    Full text link
    Gamma-ray bursts (GRBs) come in two classes: long (> 2 s), soft-spectrum bursts and short, hard events. Most progress has been made on understanding the long GRBs, which are typically observed at high redshift (z approximately 1) and found in subluminous star-forming host galaxies. They are likely to be produced in core-collapse explosions of massive stars. In contrast, no short GRB had been accurately (< 10'') and rapidly (minutes) located. Here we report the detection of the X-ray afterglow from--and the localization of--the short burst GRB 050509B. Its position on the sky is near a luminous, non-star-forming elliptical galaxy at a redshift of 0.225, which is the location one would expect if the origin of this GRB is through the merger of neutron-star or black-hole binaries. The X-ray afterglow was weak and faded below the detection limit within a few hours; no optical afterglow was detected to stringent limits, explaining the past difficulty in localizing short GRBs

    Broadband observations of the naked-eye gamma-ray burst GRB 080319B

    Get PDF
    Long- duration gamma-ray bursts ( GRBs) release copious amounts of energy across the entire electromagnetic spectrum, and so provide a window into the process of black hole formation from the collapse of massive stars. Previous early optical observations of even the most exceptional GRBs ( 990123 and 030329) lacked both the temporal resolution to probe the optical flash in detail and the accuracy needed to trace the transition from the prompt emission within the outflow to external shocks caused by interaction with the progenitor environment. Here we report observations of the extraordinarily bright prompt optical and gamma-ray emission of GRB 080319B that provide diagnostics within seconds of its formation, followed by broadband observations of the afterglow decay that continued for weeks. We show that the prompt emission stems from a single physical region, implying an extremely relativistic outflow that propagates within the narrow inner core of a two- component jet
    corecore