245 research outputs found
Lateralized Kinematics of Predation Behavior in a Lake Tanganyika Scale-Eating Cichlid Fish
Behavioral lateralization has been documented in many vertebrates. The scale-eating cichlid fish Perissodus microlepis is well known for exhibiting lateral dimorphism in its mouth morphology and lateralized behavior in robbing scales from prey fish. A previous field study indicated that this mouth asymmetry closely correlates with the side on which prey is attacked, but details of this species' predation behavior have not been previously analyzed because of the rapidity of the movements. Here, we studied scale-eating behavior in cichlids in a tank through high-speed video monitoring and quantitative assessment of behavioral laterality and kinematics. The fish observed showed a clear bias toward striking on one side, which closely correlated with their asymmetric mouth morphologies. Furthermore, the maximum angular velocity and amplitude of body flexion were significantly larger during attacks on the preferred side compared to those on the nonpreferred side, permitting increased predation success. In contrast, no such lateral difference in movement elements was observed in acoustically evoked flexion during the escape response, which is similar to flexion during scale eating and suggests that they share a common motor control pathway. Thus the neuronal circuits controlling body flexion during scale eating may be functionally lateralized upstream of this common motor pathway
Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress
In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse
The Rossiter-McLaughlin effect in Exoplanet Research
The Rossiter-McLaughlin effect occurs during a planet's transit. It provides
the main means of measuring the sky-projected spin-orbit angle between a
planet's orbital plane, and its host star's equatorial plane. Observing the
Rossiter-McLaughlin effect is now a near routine procedure. It is an important
element in the orbital characterisation of transiting exoplanets. Measurements
of the spin-orbit angle have revealed a surprising diversity, far from the
placid, Kantian and Laplacian ideals, whereby planets form, and remain, on
orbital planes coincident with their star's equator. This chapter will review a
short history of the Rossiter-McLaughlin effect, how it is modelled, and will
summarise the current state of the field before describing other uses for a
spectroscopic transit, and alternative methods of measuring the spin-orbit
angle.Comment: Review to appear as a chapter in the "Handbook of Exoplanets", ed. H.
Deeg & J.A. Belmont
Genetic Impact of a Severe El Niño Event on Galápagos Marine Iguanas (Amblyrhynchus cristatus)
The El Niño-Southern Oscillation (ENSO) is a major source of climatic disturbance, impacting the dynamics of ecosystems worldwide. Recent models predict that human-generated rises in green-house gas levels will cause an increase in the strength and frequency of El Niño warming events in the next several decades, highlighting the need to understand the potential biological consequences of increased ENSO activity. Studies have focused on the ecological and demographic implications of El Niño in a range of organisms, but there have been few systematic attempts to measure the impact of these processes on genetic diversity in populations. Here, we evaluate whether the 1997–1998 El Niño altered the genetic composition of Galápagos marine iguana populations from eleven islands, some of which experienced mortality rates of up to 90% as a result of El Niño warming. Specifically, we measured the temporal variation in microsatellite allele frequencies and mitochondrial DNA diversity (mtDNA) in samples collected before (1991/1993) and after (2004) the El Niño event. Based on microsatellite data, only one island (Marchena) showed signatures of a genetic bottleneck, where the harmonic mean of the effective population size (Ne) was estimated to be less than 50 individuals during the period between samplings. Substantial decreases in mtDNA variation between time points were observed in populations from just two islands (Marchena and Genovesa). Our results suggests that, for the majority of islands, a single, intense El Niño event did not reduce marine iguana populations to the point where substantial neutral genetic diversity was lost. In the case of Marchena, simultaneous changes to both nuclear and mitochondrial DNA variation may also be the result of a volcanic eruption on the island in 1991. Therefore, studies that seek to evaluate the genetic impact of El Niño must also consider the confounding or potentially synergistic effect of other environmental and biological forces shaping populations
Public drunkenness as a nuisance in Ghent (Belgium) and Trento (Italy)
This article explores the reality of the nuisance of public drunkenness in one nightlife location of Ghent (Belgium) and in one of Trento (Italy) and inspects the way alcohol-related disorder is viewed and tackled by police officers there. Drawing on the literature arguing for the existence of different "cultures of drinking" in western and southern European countries, a distinct reality of the nuisance of public drunkenness was hypothesized to be present in these two cities. Against the backdrop of cultural criminology scholarship and of the national literature on policing practices, it was expected that the physical/aesthetic appearance of street drinkers would differently impact on the way police officers there represent alcohol-related disorder and enforce national and local nuisance regulations. The gathered data indicate that while drinking patterns and connected disorderly behavior do not significantly vary in Ghent and in Trento, the aesthetic/physical characteristics of certain groups of people play a role in shaping the representations of some police officers in Trento. The study concludes that cultural and context-specific factors, including those linked to the cultures of drinking and to aesthetics, should be considered in criminological research to more fully understand and explain the different policing views on and attitudes to alcohol-related disorder in inner-city nightlife areas. In its conclusions, the article also highlights some directions for future research
Resolving the Trophic Relations of Cryptic Species: An Example Using Stable Isotope Analysis of Dolphin Teeth
Understanding the foraging ecology and diet of animals can play a crucial role in conservation of a species. This is particularly true where species are cryptic and coexist in environments where observing feeding behaviour directly is difficult. Here we present the first information on the foraging ecology of a recently identified species of dolphin (Southern Australian bottlenose dolphin (SABD)) and comparisons to the common bottlenose dolphin (CBD) in Victoria, Australia, using stable isotope analysis of teeth. Stable isotope signatures differed significantly between SABD and CBD for both δ13C (−14.4‰ vs. −15.5‰ respectively) and δ15N (15.9‰ vs. 15.0‰ respectively), suggesting that the two species forage in different areas and consume different prey. This finding supports genetic and morphological data indicating that SABD are distinct from CBD. In Victoria, the SABD is divided into two distinct populations, one in the large drowned river system of Port Phillip Bay and the other in a series of coastal lakes and lagoons called the Gippsland Lakes. Within the SABD species, population differences were apparent. The Port Phillip Bay population displayed a significantly higher δ15N than the Gippsland Lakes population (17.0‰ vs. 15.5‰), suggesting that the Port Phillip Bay population may feed at a higher trophic level - a result which is supported by analysis of local food chains. Important future work is required to further understand the foraging ecology and diet of this newly described, endemic, and potentially endangered species of dolphin
Does physical activity change predict functional recovery in low back pain? Protocol for a prospective cohort study
Background: Activity advice and prescription are commonly used in the management of low back pain (LBP). Although there is evidence for advising patients with LBP to remain active, facilitating both recovery and return to work, to date no research has assessed whether objective measurements of free living physical activity (PA) can predict outcome, recovery and course of LBP. Methods: An observational longitudinal study will investigate PA levels in a cohort of community-dwelling working age adults with acute and sub-acute LBP. Each participant's PA level, functional status, mood, fear avoidance behaviours, and levels of pain, psychological distress and occupational activity will be measured on three occasions during for 1 week periods at baseline, 3 months, and 1 year. Physical activity levels will be measured by self report, RT3 triaxial accelerometer, and activity recall questionnaires. The primary outcome measure of functional recovery will be the Roland Morris Disability Questionnaire (RMDQ). Free living PA levels and changes in functional status will be quantified in order to look at predictive relationships between levels and changes in free living PA and functional recovery in a LBP population. Discussion: This research will investigate levels and changes in activity levels of an acute LBP cohort and the predictive relationship to LBP recovery. The results will assess whether occupational, psychological and behavioural factors affect the relationship between free living PA and LBP recovery. Results from this research will help to determine the strength of evidence supporting international guidelines that recommend restoration of normal activity in managing LBP. Trial registration. [Clinical Trial Registration Number, ACTRN12609000282280]. © 2009 Hendrick et al; licensee BioMed Central Ltd
Female house sparrows "count on" male genes: experimental evidence for MHC-dependent mate preference in birds
<p>Abstract</p> <p>Background</p> <p>Females can potentially assess the quality of potential mates using their secondary sexual traits, and obtain "good genes" that increase offspring fitness. Another potential indirect benefit from mating preferences is genetic compatibility, which does not require extravagant or viability indicator traits. Several studies with mammals and fish indicate that the genes of the major histocompatibility complex (MHC) influence olfactory cues and mating preferences, and such preferences confer genetic benefits to offspring. We investigated whether individual MHC diversity (class I) influences mating preferences in house sparrows (<it>Passer domesticus</it>).</p> <p>Results</p> <p>Overall, we found no evidence that females preferred males with high individual MHC diversity. Yet, when we considered individual MHC allelic diversity of the females, we found that females with a low number of alleles were most attracted to males carrying a high number of MHC alleles, which might reflect a mating-up preference by allele counting.</p> <p>Conclusions</p> <p>This is the first experimental evidence for MHC-dependent mating preferences in an avian species to our knowledge. Our findings raise questions about the underlying mechanisms through which birds discriminate individual MHC diversity among conspecifics, and they suggest a novel mechanism through which mating preferences might promote the evolution of MHC polymorphisms and generate positive selection for duplicated MHC loci.</p
Genetic analysis of scattered populations of the Indian eri silkworm, Samia cynthia ricini Donovan: Differentiation of subpopulations
Deforestation and exploitation has led to the fragmentation of habitats and scattering of populations of the economically important eri silkworm, Samia cynthia ricini, in north-east India. Genetic analysis of 15 eri populations, using ISSR markers, showed 98% inter-population, and 23% to 58% intra-population polymorphism. Nei’s genetic distance between populations increased significantly with altitude (R2 = 0.71) and geographic distance (R2 = 0.78). On the dendrogram, the lower and upper Assam populations were clustered separately, with intermediate grouping of those from Barpathar and Chuchuyimlang, consistent with geographical distribution. The Nei’s gene diversity index was 0.350 in total populations and 0.121 in subpopulations. The genetic differentiation estimate (Gst) was 0.276 among scattered populations. Neutrality tests showed deviation of 118 loci from Hardy-Weinberg equilibrium. The number of loci that deviated from neutrality increased with altitude (R2 = 0.63). Test of linkage disequilibrium showed greater contribution of variance among eri subpopulations to total variance. D’2IS exceeded D’2ST, showed significant contribution of random genetic drift to the increase in variance of disequilibrium in subpopulations. In the Lakhimpur population, the peripheral part was separated from the core by a genetic distance of 0.260. Patchy habitats promoted low genetic variability, high linkage disequilibrium and colonization by new subpopulations. Increased gene flow and habitat-area expansion are required to maintain higher genetic variability and conservation of the original S. c. ricini gene pool
Tigers of Sundarbans in India: Is the Population a Separate Conservation Unit?
The Sundarbans tiger inhabits a unique mangrove habitat and are morphologically distinct from the recognized tiger subspecies in terms of skull morphometrics and body size. Thus, there is an urgent need to assess their ecological and genetic distinctiveness and determine if Sundarbans tigers should be defined and managed as separate conservation unit. We utilized nine microsatellites and 3 kb from four mitochondrial DNA (mtDNA) genes to estimate genetic variability, population structure, demographic parameters and visualize historic and contemporary connectivity among tiger populations from Sundarbans and mainland India. We also evaluated the traits that determine exchangeability or adaptive differences among tiger populations. Data from both markers suggest that Sundarbans tiger is not a separate tiger subspecies and should be regarded as Bengal tiger (P. t. tigris) subspecies. Maximum likelihood phylogenetic analyses of the mtDNA data revealed reciprocal monophyly. Genetic differentiation was found stronger for mtDNA than nuclear DNA. Microsatellite markers indicated low genetic variation in Sundarbans tigers (He= 0.58) as compared to other mainland populations, such as northern and Peninsular (Hebetween 0.67- 0.70). Molecular data supports migration between mainland and Sundarbans populations until very recent times. We attribute this reduction in gene flow to accelerated fragmentation and habitat alteration in the landscape over the past few centuries. Demographic analyses suggest that Sundarbans tigers have diverged recently from peninsular tiger population within last 2000 years. Sundarbans tigers are the most divergent group of Bengal tigers, and ecologically non-exchangeable with other tiger populations, and thus should be managed as a separate "evolutionarily significant unit" (ESU) following the adaptive evolutionary conservation (AEC) concept.Wildlife Institute of India, Dehra Dun (India)
- …